Chemical structure of Arginine
Find information on thousands of medical conditions and prescription drugs.

Arginine

Arginine (Arg) is an α-amino acid. The L-form is one of the 20 most common natural amino acids. In mammals, arginine is classified as a semiessential or conditionally essential amino acid, depending on the developmental stage and health status of the individual. more...

Home
Diseases
Medicines
A
8-Hour Bayer
Abacavir
Abamectin
Abarelix
Abciximab
Abelcet
Abilify
Abreva
Acamprosate
Acarbose
Accolate
Accoleit
Accupril
Accurbron
Accure
Accuretic
Accutane
Acebutolol
Aceclidine
Acepromazine
Acesulfame
Acetaminophen
Acetazolamide
Acetohexamide
Acetohexamide
Acetylcholine chloride
Acetylcysteine
Acetyldigitoxin
Aciclovir
Acihexal
Acilac
Aciphex
Acitretin
Actifed
Actigall
Actiq
Actisite
Actonel
Actos
Acular
Acyclovir
Adalat
Adapalene
Adderall
Adefovir
Adrafinil
Adriamycin
Adriamycin
Advicor
Advil
Aerobid
Aerolate
Afrinol
Aggrenox
Agomelatine
Agrylin
Airomir
Alanine
Alavert
Albendazole
Alcaine
Alclometasone
Aldomet
Aldosterone
Alesse
Aleve
Alfenta
Alfentanil
Alfuzosin
Alimta
Alkeran
Alkeran
Allegra
Allopurinol
Alora
Alosetron
Alpidem
Alprazolam
Altace
Alteplase
Alvircept sudotox
Amantadine
Amaryl
Ambien
Ambisome
Amfetamine
Amicar
Amifostine
Amikacin
Amiloride
Amineptine
Aminocaproic acid
Aminoglutethimide
Aminophenazone
Aminophylline
Amiodarone
Amisulpride
Amitraz
Amitriptyline
Amlodipine
Amobarbital
Amohexal
Amoxapine
Amoxicillin
Amoxil
Amphetamine
Amphotec
Amphotericin B
Ampicillin
Anafranil
Anagrelide
Anakinra
Anaprox
Anastrozole
Ancef
Android
Anexsia
Aniracetam
Antabuse
Antitussive
Antivert
Apidra
Apresoline
Aquaphyllin
Aquaphyllin
Aranesp
Aranesp
Arava
Arestin
Arestin
Argatroban
Argatroban
Argatroban
Argatroban
Arginine
Arginine
Aricept
Aricept
Arimidex
Arimidex
Aripiprazole
Aripiprazole
Arixtra
Arixtra
Artane
Artane
Artemether
Artemether
Artemisinin
Artemisinin
Artesunate
Artesunate
Arthrotec
Arthrotec
Asacol
Ascorbic acid
Asmalix
Aspartame
Aspartic acid
Aspirin
Astemizole
Atacand
Atarax
Atehexal
Atenolol
Ativan
Atorvastatin
Atosiban
Atovaquone
Atridox
Atropine
Atrovent
Augmentin
Aureomycin
Avandia
Avapro
Avinza
Avizafone
Avobenzone
Avodart
Axid
Axotal
Azacitidine
Azahexal
Azathioprine
Azelaic acid
Azimilide
Azithromycin
Azlocillin
Azmacort
Aztreonam
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

Structure

Arginine can be considered to be an amphipathic amino acid as the part of the side chain nearest to the backbone is long, carbon-containing and hydrophobic, whereas the end of the side chain is a complex guanidinium group. With pKa > 12, the guanidinium group is positively charged in neutral and acidic environments. Because of the conjugation between the double bond and the nitrogen lone pairs, the positive charge is delocalized. This group is able to form multiple H-bonds.

Synthesis

Arginine is synthesized from citrulline by the sequential action of the cytosolic enzymes ASS and ASL. This is energetically costly, as the synthesis of each molecule of argininosuccinate requires hydrolysis of ATP to AMP; i.e., two ATP equivalents.

Citrulline can be derived from multiple sources:

  • from arginine via nitric oxide synthase (NOS);
  • from ornithine via catabolism of proline or glutamine/glutamate;
  • from ADMA via DDAH.

The pathways linking arginine, glutamine, and proline are bidirectional. Thus, the net utilization or production of these amino acids is highly dependent on cell type and developmental stage.

On a whole-body basis, synthesis of arginine occurs principally via the intestinal–renal axis, wherein epithelial cells of the small intestine, which produce citrulline primarily from glutamine and glutamate, collaborate with the proximal tubule cells of the kidney, which extract citrulline from the circulation and convert it to arginine, which is returned to the circulation. Consequently, impairment of small bowel or renal function can reduce endogenous arginine synthesis, thereby increasing the dietary requirement.

Synthesis of arginine from citrulline also occurs at a low level in many other cells, and cellular capacity for arginine synthesis can be markedly increased under circumstances that also induce iNOS. Thus, citrulline, a coproduct of the NOS-catalyzed reaction, can be recycled to arginine in a pathway known as the citrulline-NO or arginine-citrulline pathway. This is demonstrated by the fact that in many cell types, citrulline can substitute for arginine to some degree in supporting NO synthesis. However, recycling is not quantitative because citrulline accumulates along with nitrate and nitrite, the stable end-products of NO, in NO-producing cells. (Morris SM Jr, 2004)

Function

Arginine plays an important role in cell division, the healing of wounds, removing ammonia from the body, immune function, and the release of hormones.

In proteins

The geometry, charge distribution and ability to form multiple H-bonds make arginine ideal for binding negatively charged groups. For this reason arginine prefers to be on the outside of the proteins where it can interact with the polar environment. Incorporated in proteins, arginine can also be converted to citrulline by PAD enzymes. In addition, arginine can be methylated by protein methyltransferases.

Read more at Wikipedia.org


[List your site here Free!]


L-Arginine and L-Lysine stimulation on cultured human osteoblasts - Brief Article
From Alternative Medicine Review, 2/1/03 by P Torricelli

Torricelli P, Fini M, Giavaresi G, et al. Biomed Pharmacother 2002;56:492-497.

Essential amino acids, such as L-Arginine (Arg) and L-Lysine (Lys), are involved in bone metabolism and growth. Our previous studies analyzed the effect of these amino acids on rat osteoblast cultures and in experimental animals. In this study, we evaluated the effect of L-Arg and L-Lys on cultured human osteoblasts. Primary human osteoblast cultures were divided into four groups: the Arg Group received 0.625 mg/ml per day of Arg, the gys Group 0.587 mg/ml per day of Lys, the Arg-Lys Group received both amino acids, whereas the Control Group was sham-treated. After 7 days, the following parameters were tested in all groups: alkaline phosphatase (ALP), nitric oxide (NO), calcium (Ca), phosphorus (P), osteocalcin (OC), type I collagen (PICP), interleukin-6 (IL-6), transforming growth factor-beta 1 (TGF-beta 1) on culture supernatant, platelet derived growth factor (PDGF), insulin-like growth factor-I (IGF-I), and MTT proliferation test on cells. Arg administration significantly increased ALR NO, PICP and IGF-I production and reduced the level of IL-6. Lys administration over the same time interval mainly affected cell proliferation, as evidenced by the MTT test and immunostaining for PDGF. The same positive effects evidenced by the single administrations of the two amino acids resulted from their simultaneous administration. However, synergism could be demonstrated only for the decrease in the level of IL-6. Arg and Lys show a positive effect on human osteoblasts, which is related partly to the production of those factors required for matrix synthesis, and partly to the direct or mediated activation of cell proliferation.

COPYRIGHT 2003 Thorne Research Inc.
COPYRIGHT 2003 Gale Group

Return to Arginine
Home Contact Resources Exchange Links ebay