Chemical structure of aspartame
Find information on thousands of medical conditions and prescription drugs.

Aspartame

Aspartame is the name for an artificial, non-carbohydrate sweetener, aspartyl-phenylalanine-1-methyl ester; i.e., the methyl ester of the dipeptide of the amino acids aspartic acid and phenylalanine. It is marketed under a number of trademark names, such as NutraSweet, Equal, and Canderel, and is an ingredient of approximately 5,000 consumer foods and beverages sold worldwide. It is commonly used in diet soft drinks, and is often provided as a table condiment. It is also used in some brands of chewable vitamin supplements. more...

Home
Diseases
Medicines
A
8-Hour Bayer
Abacavir
Abamectin
Abarelix
Abciximab
Abelcet
Abilify
Abreva
Acamprosate
Acarbose
Accolate
Accoleit
Accupril
Accurbron
Accure
Accuretic
Accutane
Acebutolol
Aceclidine
Acepromazine
Acesulfame
Acetaminophen
Acetazolamide
Acetohexamide
Acetohexamide
Acetylcholine chloride
Acetylcysteine
Acetyldigitoxin
Aciclovir
Acihexal
Acilac
Aciphex
Acitretin
Actifed
Actigall
Actiq
Actisite
Actonel
Actos
Acular
Acyclovir
Adalat
Adapalene
Adderall
Adefovir
Adrafinil
Adriamycin
Adriamycin
Advicor
Advil
Aerobid
Aerolate
Afrinol
Aggrenox
Agomelatine
Agrylin
Airomir
Alanine
Alavert
Albendazole
Alcaine
Alclometasone
Aldomet
Aldosterone
Alesse
Aleve
Alfenta
Alfentanil
Alfuzosin
Alimta
Alkeran
Alkeran
Allegra
Allopurinol
Alora
Alosetron
Alpidem
Alprazolam
Altace
Alteplase
Alvircept sudotox
Amantadine
Amaryl
Ambien
Ambisome
Amfetamine
Amicar
Amifostine
Amikacin
Amiloride
Amineptine
Aminocaproic acid
Aminoglutethimide
Aminophenazone
Aminophylline
Amiodarone
Amisulpride
Amitraz
Amitriptyline
Amlodipine
Amobarbital
Amohexal
Amoxapine
Amoxicillin
Amoxil
Amphetamine
Amphotec
Amphotericin B
Ampicillin
Anafranil
Anagrelide
Anakinra
Anaprox
Anastrozole
Ancef
Android
Anexsia
Aniracetam
Antabuse
Antitussive
Antivert
Apidra
Apresoline
Aquaphyllin
Aquaphyllin
Aranesp
Aranesp
Arava
Arestin
Arestin
Argatroban
Argatroban
Argatroban
Argatroban
Arginine
Arginine
Aricept
Aricept
Arimidex
Arimidex
Aripiprazole
Aripiprazole
Arixtra
Arixtra
Artane
Artane
Artemether
Artemether
Artemisinin
Artemisinin
Artesunate
Artesunate
Arthrotec
Arthrotec
Asacol
Ascorbic acid
Asmalix
Aspartame
Aspartic acid
Aspirin
Astemizole
Atacand
Atarax
Atehexal
Atenolol
Ativan
Atorvastatin
Atosiban
Atovaquone
Atridox
Atropine
Atrovent
Augmentin
Aureomycin
Avandia
Avapro
Avinza
Avizafone
Avobenzone
Avodart
Axid
Axotal
Azacitidine
Azahexal
Azathioprine
Azelaic acid
Azimilide
Azithromycin
Azlocillin
Azmacort
Aztreonam
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

However, aspartame is not always suitable for baking, because it often breaks down when heated and loses much of its sweetness. In the European Union, it is also known under the E number (additive code) E951. Aspartame is also one of the sugar substitutes used by diabetics.

Aspartame has been the subject of a vigorous public controversy regarding its safety and the circumstances around its approval. It is well-known that aspartame contains the naturally-occurring amino acid phenylalanine, which is a health hazard to the few people born with phenylketonuria, a genetic inability to process phenylalanine. A few studies have also recommended further investigation into possible connections between aspartame and diseases such as brain tumors, brain lesions, and lymphoma, but no large-scale studies have been conducted. These possibilities, combined with notable conflicts of interest in the approval process, have engendered vocal activism regarding the legitimate risks of aspartame, as well as some less credible theories.

Chemistry

Aspartame is the methyl ester of the dipeptide of the natural amino acids L-aspartic acid and L-phenylalanine. Under strongly-acidic or -alkaline conditions, aspartame first generates methanol by hydrolysis. Under more severe conditions, the peptide bonds are also hydrolyzed, resulting in the free amino acids.

Properties and use

Aspartame's attractiveness as a sweetener comes from the fact that it is approximately 180 times sweeter than sugar in typical concentrations without the high energy value of sugar. While aspartame, like other peptides, has a caloric value of 4 kilocalories (17 kilojoules) per gram, the quantity of aspartame needed to produce a sweet taste is so small that its caloric contribution is negligible, which makes it a popular sweetener for those trying to avoid calories from sugar. The taste of aspartame is not identical to that of sugar: aspartame's sweetness has a slower onset and longer duration than sugar's, and some consumers find it unappealing. Blends of aspartame with acesulfame potassium are purported to have a more sugar-like taste, and to be more potent than either sweetener used alone.

Like many other peptides, aspartame may hydrolyze (break down) into its constituent amino acids under conditions of elevated temperature (in the case of aspartame, 86 °C) or high pH. This makes aspartame undesirable as a baking sweetener, and prone to degradation in high-pH products requiring a long shelf life. Aspartame's stability under heating can be improved to some extent by encasing it in fats or in maltodextrin. Aspartame's stability when dissolved in water depends markedly on pH. At room temperature, it is most stable at pH 4.3, where its half-life is nearly 300 days. At pH 7, however, its half-life is only a few days. Most soft-drinks have a pH between 3 and 5, where aspartame is reasonably stable. In products that may require a longer shelf life, such as syrups for fountain beverages, aspartame is sometimes blended with a more stable sweetener, such as saccharin.

Read more at Wikipedia.org


[List your site here Free!]


Dangerous Diet Drinks - artificial sweetener aspartame may affect memory - Brief Article
From Psychology Today, 3/1/01 by Peter Rebhahn

CAN'T REMEMBER WHAT YOU HAD FOR LUNCH? WHAT YOU ATE OR DRANK MIGHT BE THE REASON.

New research suggests that the artificial sweetener aspartame may actually go to your head.

Anecdotal evidence that aspartame disrupts memory has been growing since the sugar substitute was approved in the early 1980s, though attempts to prove the claim have so far been equivocal. Previous studies have tested memory by asking aspartame users to remember lists of words or numbers--tests of short-term memory. But according to Timothy M. Barth, Ph.D., a psychology professor at Texas Christian University, those studies focused on the wrong type of memory.

In his study of 90 students, Barth found that participants who regularly drank diet sodas containing aspartame performed as well as nonusers on laboratory tests. However, aspartame users were more likely to report long-term memory lapses like forgetting details of personal routines or whether or not a task had been completed.

"These people aren't crazy," says Barth. Instead, "the type of memory problems they report are not the type of memories that have been assessed in the typical laboratory study."

After reporting his findings at a recent Society for Neuroscience meeting, Barth cautioned that he thinks it's premature to condemn aspartame. But he does worry about the largely untested effects of long-term use. Already, he has made some converts. "Several of my graduate students who drank diet soda no longer do."

COPYRIGHT 2001 Sussex Publishers, Inc.
COPYRIGHT 2001 Gale Group

Return to Aspartame
Home Contact Resources Exchange Links ebay