Mechanism of insulin release in normal pancreatic beta cells (i.e., glucose dependence). Insulin production does not depend on blood glucose levels; insulin is stored pending release
Find information on thousands of medical conditions and prescription drugs.

Diabetes, insulin dependent

Diabetes mellitus is a medical disorder characterized by varying or persistent hyperglycemia (elevated blood sugar levels), especially after eating. All types of diabetes mellitus share similar symptoms and complications at advanced stages. Hyperglycemia itself can lead to dehydration and ketoacidosis. Longer-term complications include cardiovascular disease (doubled risk), chronic renal failure (it is the main cause for dialysis), retinal damage which can lead to blindness, nerve damage which can lead to erectile dysfunction (impotence), gangrene with risk of amputation of toes, feet, and even legs. more...

Home
Diseases
A
B
C
D
Dandy-Walker syndrome
Darier's disease
Dementophobia
Demyelinating disease
Dendrophobia
Dengue fever
Dental fluorosis
Dentinogenesis imperfecta
Dentophobia
Depersonalization disorder
Dermatitis herpetiformis
Dermatofibroma
Dermatographic urticaria
Dermatomyositis
Dermatophytosis
Desmoplastic small round...
Dextrocardia
Diabetes insipidus
Diabetes mellitus
Diabetes, insulin dependent
Diabetic angiopathy
Diabetic nephropathy
Diabetic neuropathy
Diamond Blackfan disease
Diastrophic dysplasia
Dibasic aminoaciduria 2
Diethylstilbestrol...
DiGeorge syndrome
Dilated cardiomyopathy
Diphallia
Diphtheria
Dipsophobia
Dissociative amnesia
Dissociative fugue
Dissociative identity...
Distemper
Diverticulitis
Diverticulosis
Dk phocomelia syndrome
Doraphobia
Double outlet right...
Downs Syndrome
Dracunculiasis
Duane syndrome
Dubin-Johnson syndrome
Dubowitz syndrome
Duchenne muscular dystrophy
Dupuytren's contracture
Dwarfism
Dysbarism
Dysgerminoma
Dyskeratosis congenita
Dyskinesia
Dysmorphophobia
Dysplasia
Dysplastic nevus syndrome
Dysthymia
Dystonia
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Medicines

The more serious complications are more common in people who have a difficult time controlling their blood sugars with medications (glycemic control).

The most important forms of diabetes are due to decreased or the complete absence of the production of insulin (type 1 diabetes), or decreased sensitivity of body tissues to insulin (type 2 diabetes, the more common form). The former requires insulin injections for survival; the latter is generally managed with diet, weight reduction and exercise in about 20% of cases, though the majority require these strategies plus oral medication (insulin is used if the tablets are ineffective).

Patient understanding and participation is vital as blood glucose levels change continuously. Treatments which return the blood sugar to normal levels can reduce or prevent development of the complications of diabetes. Other health problems that accelerate the damaging effects of diabetes are smoking, elevated cholesterol levels, obesity, high blood pressure, and lack of regular exercise.

History

Although diabetes has been recognized since antiquity, and treatments were known since the Middle Ages, the elucidation of the pathogenesis of diabetes occurred mainly in the 20th century6.

Until 1921, when insulin was first discovered and made clinically available, a clinical diagnosis of what we now call type 1 diabetes was an invariable death sentence, more or less quickly. Non-progressing type 2 diabetics almost certainly often went undiagnosed then; many still do.

The discovery of the role of the pancreas in diabetes is generally credited to Joseph Von Mering and Oskar Minkowski, two European researchers who, in 1889, found that when they completely removed the pancreas of dogs, the dogs developed all the signs and symptoms of diabetes and died shortly afterward. In 1910, Sir Edward Albert Sharpey-Schafer of Edinburgh in Scotland suggested diabetics were deficient in a single chemical that was normally produced by the pancreas - he proposed calling this substance insulin.

The endocrine role of the pancreas in metabolism, and indeed the existence of insulin, was not fully clarified until 1921, when Sir Frederick Grant Banting and Charles Herbert Best repeated the work of Von Mering and Minkowski but went a step further and managed to show that they could reverse the induced diabetes in dogs by giving them an extract from the pancreatic islets of Langerhans of healthy dogs7. They went on to isolate the hormone insulin from bovine pancreases at the University of Toronto in Canada.

This led to the availability of an effective treatment - insulin injections - and the first clinical patient was treated in 1922. For this, Banting et al received the Nobel Prize in Physiology or Medicine in 1923. The two researchers made the patent available and did not attempt to control commercial production. Insulin production and therapy rapidly spread around the world, largely as a result of their decision.

Read more at Wikipedia.org


[List your site here Free!]


Conjunctival and tear film changes after vitamin C and E administration in non-insulin dependent diabetes mellitus
From Alternative Medicine Review, 6/1/04

Peponis V, Bonovas S, Kapranou A, et al. Med Sci Monit 2004; 10:CR213-CR217.

BACKGROUND: The purpose of our research was to investigate the effect of supplementation with vitamin C and E on ocular surface cytology specimens and related parameters in diabetic patients. MATERIALS/METHODS: 60 patients were enrolled in the study. The patients were given vitamin C (1000 mg/day) and vitamin IE (400 IU/day) for 10 days. Conjunctival brush cytology specimens were obtained before and after treatment. Schirmer tests, break-up time and ocular ferning tests were also performed. RESULTS: Goblet cell densities were 50 cells/per field before and 59 cells/per field after supplementation (p=0.002). The stage of squamous metaplasia was 1.12+/-0.42 before and 0.8810.41 after supplementation (p=0.011). The changes were accompanied with improved values for the Schirmer test (p<0.001), break up time (p=0.001), and ocular ferning (p<0.001). CONCLUSIONS: Diabetes mellitus is associated with increased oxidative stress. Our study suggests that supplementation with antioxidant vitamins C and E probably plays an important role in improving the ocular surface milieu.

COPYRIGHT 2004 Thorne Research Inc.
COPYRIGHT 2004 Gale Group

Return to Diabetes, insulin dependent
Home Contact Resources Exchange Links ebay