Diazepam chemical structure
Find information on thousands of medical conditions and prescription drugs.

Diazepam

Diazepam (marketed under brand names Valium®, Seduxen® and, in Europe, Apozepam® and Diapam®) is a drug which is a benzodiazepine derivative. It possesses anxiolytic, anticonvulsant, sedative and skeletal muscle relaxant properties. more...

Home
Diseases
Medicines
A
B
C
D
Dacarbazine
Dactinomycin
Dalmane
Danazol
Dantrolene
Dapoxetine
Dapsone
Daptomycin
Daraprim
Darvocet
Darvon
Daunorubicin
Daunorubicin
Daypro
DDAVP
Deca-Durabolin
Deferoxamine
Delsym
Demeclocycline
Demeclocycline
Demerol
Demulen
Denatonium
Depakene
Depakote
Depo-Provera
Desferal
Desflurane
Desipramine
Desmopressin
Desogen
Desogestrel
Desonide
Desoxyn
Desyrel
Detrol
Dexacort
Dexamethasone
Dexamfetamine
Dexedrine
Dexpanthenol
Dextran
Dextromethorphan
Dextromoramide
Dextropropoxyphene
Dextrorphan
Diabeta
Diacerein
Diacetolol
Dial
Diamox
Diazepam
Diazoxide
Dibenzepin
Diclofenac
Diclohexal
Didanosine
Dieldrin
Diethylcarbamazine
Diethylstilbestrol
Diethyltoluamide
Differin
Diflucan
Diflunisal
Digitoxin
Digoxin
Dihydrocodeine
Dihydroergotamine
Dihydrotachysterol
Dilantin
Dilaudid
Diltahexal
Diltiazem
Dimenhydrinate
Dimercaprol
Dimetapp
Dimethyl sulfoxide
Dimethyltryptamine
Dimetridazole
Diminazene
Diovan
Dioxybenzone
Diphenhydramine
Diphenoxylate
Dipipanone
Dipivefrine
Diprivan
Diprolene
Diproteverine
Dipyridamole
Disulfiram
Disulfiram
Dizocilpine
Dobutamine
Docetaxel
Docusate sodium
Dofetilide
Dolasetron
Dolobid
Dolophine
Domperidone
Donepezil
Dopamine
Dopram
Doral
Doramectin
Doriden
Dornase alfa
Doryx
Dostinex
Doxapram
Doxazosin
Doxepin
Doxil
Doxil
Doxorubicin
Doxy
Doxycycline
Doxyhexal
Doxylamine
Drisdol
Drixoral
Dronabinol
Droperidol
Drospirenone
Duloxetine
Durabolin
Duragesic
Duraphyl
Duraquin
Dutasteride
Dv
Dyclonine
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

History

Diazepam was the second benzodiazepine to be invented by Leo Sternbach around 1960. It is five times more potent than its predecessor, chlordiazepoxide (Librium®), which it quickly overtook when first marketed in 1963. The benzodiazepines gained popularity among medical professionals as an improvement upon barbiturates, which have a comparatively narrow therapeutic index. At first, diazepam was considered something of a "wonder-drug": it was America's top-selling pharmaceutical from 1969 to 1982, with peak sales in 1978 of 2.3 billion pills ($US600 million in sales).

However, it is now known that benzodiazepines carry a risk of dependency. In the autumn of 1973, a report aired on the television show 60 Minutes attesting to the drug's addictiveness. This can occur in as little as four weeks. Following a controversial and often polemic discussion, benzodiazepine prescriptions declined by nearly half in the 1980's and 1990's.

Psychiatrists and neurologists have recently discovered new off-label uses for this 'old' drug, such as adjunctive treatment of extrapyramidal disorders or spastic paresis. This is most likely due to the inhibitory effects of the benzodiazepines (see Pharmacology section below).

Pharmacology

In animal models, diazepam appears to act on areas of the limbic system, thalamus and hypothalamus, inducing anxiolytic effects. It is thought to bind to GABAA receptors, (a sub-type of GABA receptors). Due to the role of diazepam as a GABAminergic agonist, when it binds to GABA receptors it causes inhibitory effects. This arises from the hyperpolarization of the postsynaptic membrane, due to the control exerted over negative chloride ions by GABAA receptors.

Diazepam is redistributed into tissues and fat deposits, where there are similar types of benzodiazepine receptors. In humans, tolerance to the sedative effects may develop within weeks, but tolerance to the anxiolytic effects usually does not develop. Lorazepam, clonazepam and alprazolam show stronger anxiolytic effects compared to diazepam, but carry a higher risk of misuse, abuse, tolerance and dependence.

Pharmacokinetics

Diazepam can be administered orally, intravenously, intramuscularly, or as a suppository. When taken orally, diazepam is rapidly absorbed and shows a fast onset of action. Absorption is much slower and more erratic when diazepam is given as an intramuscular injection. Diazepam is highly lipid-soluble and therefore crosses the blood-brain barrier easily.

Diazepam is metabolised in the liver and has a biphasic half-life. The half-life (t1/2α) is 20-100 hours, and the main active metabolite, desmethyldiazepam, has a half-life of 36-200 hours. Diazepam's other active metabolites include, among others, temazepam and oxazepam. Diazepam and its metabolites are excreted into the urine.

Read more at Wikipedia.org


[List your site here Free!]


Synergistic interaction between hesperidin, a natural flavonoid, and diazepam
From Alternative Medicine Review, 6/1/05 by S.P. Fernandez

Fernandez SP, Wasowski C, Paladini AC, Marder M. Eur J Pharmacol 2005;512:189-198.

It has been recently reported the presence in Valeriana of the flavone 6-methylapigenin and the flavanone glycoside hesperidin. The apigenin derivative is a ligand for the benzodiazepine binding site in the gamma-aminobutyric acid receptor type A (GABA(A)) and has anxiolytic properties. Hesperidin has sedative and sleep-enhancing properties but is not a ligand for the benzodiazepine binding site. 6-Methylapigenin is able to potentiate the sleep-enhancing effect of hesperidin. In this work we demonstrate that this property is shared with various GABA(A) receptor ligands, among them the agonist diazepam, which was used to study the potentiation as measured in the hole board test. Isobolar analysis of the results showed the interaction being synergistic. We discarded pharmacokinetic effects or a direct action of hesperidin on the benzodiazepine binding site. A possible use of hesperidin properties to decrease the effective therapeutic doses of benzodiazepines is suggested.

COPYRIGHT 2005 Thorne Research Inc.
COPYRIGHT 2005 Gale Group

Return to Diazepam
Home Contact Resources Exchange Links ebay