Find information on thousands of medical conditions and prescription drugs.

Diazoxide

Diazoxide is a potassium channel activator, which causes local relaxation in smooth muscle by increasing membrane permeability to potassium ions. This switches off voltage-gated calcium ion channels which inhibits the generation of an action potential.

It is used as a vasodilator, and also to decrease the secretion of insulin in disease states such as insulinoma (a tumor producing insulin).

Home
Diseases
Medicines
A
B
C
D
Dacarbazine
Dactinomycin
Dalmane
Danazol
Dantrolene
Dapoxetine
Dapsone
Daptomycin
Daraprim
Darvocet
Darvon
Daunorubicin
Daunorubicin
Daypro
DDAVP
Deca-Durabolin
Deferoxamine
Delsym
Demeclocycline
Demeclocycline
Demerol
Demulen
Denatonium
Depakene
Depakote
Depo-Provera
Desferal
Desflurane
Desipramine
Desmopressin
Desogen
Desogestrel
Desonide
Desoxyn
Desyrel
Detrol
Dexacort
Dexamethasone
Dexamfetamine
Dexedrine
Dexpanthenol
Dextran
Dextromethorphan
Dextromoramide
Dextropropoxyphene
Dextrorphan
Diabeta
Diacerein
Diacetolol
Dial
Diamox
Diazepam
Diazoxide
Dibenzepin
Diclofenac
Diclohexal
Didanosine
Dieldrin
Diethylcarbamazine
Diethylstilbestrol
Diethyltoluamide
Differin
Diflucan
Diflunisal
Digitoxin
Digoxin
Dihydrocodeine
Dihydroergotamine
Dihydrotachysterol
Dilantin
Dilaudid
Diltahexal
Diltiazem
Dimenhydrinate
Dimercaprol
Dimetapp
Dimethyl sulfoxide
Dimethyltryptamine
Dimetridazole
Diminazene
Diovan
Dioxybenzone
Diphenhydramine
Diphenoxylate
Dipipanone
Dipivefrine
Diprivan
Diprolene
Diproteverine
Dipyridamole
Disulfiram
Disulfiram
Dizocilpine
Dobutamine
Docetaxel
Docusate sodium
Dofetilide
Dolasetron
Dolobid
Dolophine
Domperidone
Donepezil
Dopamine
Dopram
Doral
Doramectin
Doriden
Dornase alfa
Doryx
Dostinex
Doxapram
Doxazosin
Doxepin
Doxil
Doxil
Doxorubicin
Doxy
Doxycycline
Doxyhexal
Doxylamine
Drisdol
Drixoral
Dronabinol
Droperidol
Drospirenone
Duloxetine
Durabolin
Duragesic
Duraphyl
Duraquin
Dutasteride
Dv
Dyclonine
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

Read more at Wikipedia.org


[List your site here Free!]


ATP interaction with the open state of the K(ATP) channel
From Biophysical Journal, 2/1/01 by Enkvetchakul, D

ABSTRACT The mechanism of ATP-sensitive potassium (K^sub ATP^) channel closure by ATP is unclear, and various kinetic models in which ATP binds to open or to closed states have previously been presented. Effects of phosphatidylinositol bisphosphate (PIP^sub 2^,) and multiple Kir6.2 mutations on ATP inhibition and open probability in the absence of ATP are explainable in kinetic models where ATP stabilizes a closed state and interaction with an open state is not required. Evidence that ATP can in fact interact with the open state of the channel is presented here. The mutant Kir6.2[L164C] is very sensitive to Cd^sup 2+^ block, but very insensitive to ATP, with no significant inhibition in 1 mM ATP. However, 1 mM ATP fully protects the channel from Cd^sup 2+^ block. Allosteric kinetic models in which the channel can be in either open or closed states with or without ATP bound are considered. Such models predict a pedestal in the ATP inhibition, i.e., a maximal amount of inhibition at saturating ATP concentrations. This pedestal is predicted to occur at >50 mM ATP in the L164C mutant, but at >1 mM in the double mutant L164C/R176A. As predicted, ATP inhibits Kir6.2[L164C/R176A] to a maximum of -40%, with a clear plateau beyond 2 mM. These results indicate that ATP acts as an allosteric ligand, interacting with both open and closed states of the channel.

INTRODUCTION

First described in 1983 by Akinori Noma, ATP-sensitive potassium (K^sub ATP^) channels are reversibly inhibited by the nonhydrolytic binding of intracellular ATP (Noma, 1983; Ashcroft, 1988; Nichols and Lederer, 1991). The KA.tp channel is a hetero-octamer formed by an inward-rectifying K+-channel subunit (Kir6.x) and a sulfonylurea receptor (SURx) (Aguilar-Bryan et al., 1995; Inagaki et al., 1995, 1996) in a 4:4 stoichiometry (Clement et al., 1997; Inagaki et al., 1997; Shyng and Nichols, 1997). ATP inhibition occurs through interaction with the Kir6.2 subunit (Shyng et al., 1997a; Tucker et al., 1997, 1998; Tanabe et al., 1999), whereas the SURx subunit confers high-affinity block by sulfonylureas and stimulation by K+ channel openers and MgADP (Aguilar-Bryan et al., 1995; Inagaki et al., 1996; Isomoto et al., 1996; Nichols et al., 1996; Gribble et al., 1997a,b; Shyng et al., 1997b; Schwanstecher et al., 1998).

Although there are a few mutations that alter ATP sensitivity without affecting the channel gating in the absence of ATP (Tucker et al., 1997; Li et al., 2000), most mutations in the Kir6.2 subunit alter sensitivity to ATP inhibition (K^ sub 1/2,ATP^) and open probability in the absence of ATP (P^sub Ozero^) in a strongly correlated manner. This correlation can be quantitatively explained by models that assume ATP binds to the closed state of the channel (Shyng et al., 1997a; Enkvetchakul et al., 2000). In accord with this notion, open-time distributions are generally not altered in the presence of ATP (Alekseev et al., 1998; Drain et al., 1998; Trapp et al., 1998; Enkvetchakul et al., 2000; Li et al., 2000), and diverse steady-state and kinetic nucleotide sensitivity data of wild-type and mutant K^sub ATP^ are reproducible by such a gating scheme (Enkvetchakul et al., 2000).

REFERENCES

Aguilar-Bryan, L., C. G. Nichols, S. W. Wechsler, J. P. Clement, I. V., A. E. Boyd, III, G. Gonzalez, H. Herrera-Sosa, K. Nguy, J. Bryan, and D. A. Nelson. 1995. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science. 268:423-426.

Alekseev, A. E., P. A. Brady, and A. Terzic. 1998. Ligand-insensitive state of cardiac ATP-sensitive K+ channels: basis for channel opening. J. Gen. Physiol. 111:381-394.

Ashcroft, F. M. 1988. Adenosine 5'-triphosphate-sensitive potassium channels. Annu. Rev. Neurosci. 11:97-118.

Ashcroft, F. M., D. E. Harrison, and S. J. Ashcroft. 1986. A potassium channel modulated by glucose metabolism in rat pancreatic beta-cells. Adv. Exp. Med. BioL 211:53-62.

Babenko, A. P., L. Aguilar-Bryan, and J. Bryan. 1998. A view of SUR/ KIR6.X, KAT channels. Annu. Rev. Physiol. 60:667-687.

Clement, J. P., IV, K. Kunjilwar, G. Gonzalez, M. Schwanstecher, U. Panten, L. Aguilar-Bryan, and J. Bryan. 1997. Association and stoichiometry of KA.ip channel subunits. Neuron. 18:827-838.

Colquhoun, D., and A. G. Hawkes. 1995a. The Principles of the Stochastic Interpretation of Ion-Channel Mechanisms. In Single-Channel Recording. B. Sakmann and E. Neher, editors. Plenum Press, New York. 397-482.

Colquhoun, D., and A. G. Hawkes. 1995b. A Q-matrix cookbook: how to write only one program to calculate the single-channel and macroscopic predictions for any kinetic mechanism. In Single-Channel Recording. B. Sakmann and E. Neher, editors. Plenum Press, New York. 589-636.

Cuevas, J., A. L. Bassett, J. S. Cameron, T. Furukawa, R. J. Myerburg, and S. Kimura. 1991. Effect of H+ on ATP-regulated K+ channels in feline ventricular myocytes. Am J Physiol. 261:H755-H761.

del Camino, D., M. Holmgren, Y. Liu, and G. Yellen. 2000. Blocker protection in the pore of a voltage-gated K+ channel and its structural implications. Nature. 403:321-325.

Doyle, D. A., J. Morais Cabral, R. A. Pfuetzner, A. Kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait, and R. MacKinnon. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 280:69-77.

Drain, P., L. Li, and J. Wang. 1998. KATP channel inhibition by ATP requires distinct functional domains of the cytoplasmic C terminus of the pore-forming subunit. Proc. Natl. Acad. Sci. U.S.A. 95:13953-13958.

Enkvetchakul, D., G. Loussouarn, E. Makhina, S.-L. Shyng, and C. G. Nichols. 2000. The kinetic and physical basis of K(ATP) channel gating: toward a unified molecular understanding. Biophys. J. 78:2334-2348.

Espinosa, F., R. Fleischhauer, A. McMahon, M. W. Davis, L. Avery, and R. H. Joho. 2000. Bulky side-chain substitutions in S6 of EXP-2 trap the K+ channel in an open state. Biophys. J. 78:271.

Fan, Z., and J. C. Makielski. 1999. Phosphoinositides decrease ATP sensitivity of the cardiac ATP-sensitive K+ channel: a molecular probe for the mechanism of ATP-sensitive inhibition. J. Gen. Physiol. 114: 251-269.

Flynn, G. E., and W. N. Zagotta. 2000. Conformational changes in the S6 region of rod cyclic nucleotide-gated channels. Biophys. J. 78:148.

Gillis, K. D., W. M. Gee, A. Hammoud, M. L. McDaniel, L. C. Falke, and S. Misler. 1989. Effects of sulfonamides on a metabolite-regulated ATP-sensitive K+ channel in rat pancreatic P-cells. Am. J. Physiol. 257:C 1119-Cl 127.

Gribble, F. M., S. J. Tucker, and F. M. Ashcroft. 1997a. The essential role of the Walker A motifs of SURI in K-ATP channel activation by Mg-ADP and diazoxide. EMBO J. 16:1145-1152.

Gribble, F. M., S. J. Tucker, and F. M. Ashcroft. 1997b. The interaction of nucleotides with the tolbutamide block of cloned ATP-sensitive K+ channel currents expressed in Xenopus oocytes: a reinterpretation. J. PhysioL (Loud.). 504:35-45.

Hackos, D. H., and K. J. Swartz. 2000. Mutations of a conserved proline in the inner helix of the pore domain of the Shaker K+ channel with altered gating properties. Biophys. J. 78:398.

Inagaki, N., T. Gonoi, J. P. Clement, I. V., N. Namba, J. Inazawa, G. Gonzalez, L. Aguilar-Bryan, S. Seino, and J. Bryan. 1995. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science. 270:1166-1170.

Inagaki, N., T. Gonoi, J. P. Clement, I. V., C. Z. Wang, L. Aguilar-Bryan, J. Bryan, and S. Seino. 1996. A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron. 16:1011-1017.

Inagaki, N., T. Gonoi, and S. Seino. 1997. Subunit stoichiometry of the pancreatic beta-cell ATP-sensitive K+ channel. FEBS Lett. 409: 232-236.

Isomoto, S., C. Kondo, M. Yamada, S. Matsumoto, 0. Higashiguchi, Y. Horio, Y. Matsuzawa, and Y. Kurachi. 1996. A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type ATP-sensitive K+ channel. J Biol Chem. 271:24321-24324.

Li, L., J. Wang, and P. Drain. 2000. The 1182 region of Kir6.2 is closely associated with ligand binding in KAT, channel inhibition by ATP. Biophys. J. 79:841-852.

Lin, Y. F., Y. N. Jan, and L. Y. Jan. 2000. Regulation of ATP-sensitive potassium channel function by protein kinase A-mediated phosphorylation in transfected HEK293 cells. EMBO J. 19:942-955.

Li-Smerin, Y., D. H. Hackos, and K. J. Swartz. 2000. A localized interaction surface for voltage-sensing domains on the pore domain of a K+ channel. Neuron. 25:411-423.

Loussouarn, G., E. N. Makhina, T. Rose, and C. G. Nichols. 2000. Structure and dynamics of the pore of inwardly rectifying KATp channels. J. Biol. Chem. 275:1137-1144.

Minor, D. L., Jr., S. J. Masseling, Y. N. Jan, and L. Y. Jan. 1999. Transmembrane structure of an inwardly rectifying potassium channel. Cell. 96:879-891.

Monod, J., J. Wyman, and J.-P. Changeux. 1965. On the nature of allosteric transitions: a plausible model. J. MoL BioL 12:88-118.

Nichols, C. G., and W. J. Lederer. 1991. Adenosine triphosphate-sensitive potassium channels in the cardiovascular system. Am. J. PhysioL 261: H1675-HI686.

Nichols, C. G., W. J. Lederer, and M. B. Cannell. 1991. ATP dependence of KA.ip channel kinetics in isolated membrane patches from rat ventricle. Biophys. J. 60:1164-1177.

Nichols, C. G., S.-L. Shyng, A. Nestorowicz, B. Glaser, J. P. Clement, I. V., G. Gonzalez, L. Aguilar-Bryan, M. A. Permutt, and J. Bryan. 1996. Adenosine diphosphate as an intracellular regulator of insulin secretion. Science. 272:1785-1787.

Noma, A. 1983. ATP-regulated K+ channels in cardiac muscle. Nature. 305:147-148.

Perozo, E., D. M. Cortes, and L. G. Cuello. 1999. Structural rearrangements underlying K+-channel activation gating. Science. 285:73-78. Qin, F., A. Auerbach, and F. Sachs. 1996. Estimating single-channel

kinetic parameters from idealized patch-clamp data containing missed events. Biophys. J. 70:264-280.

Schwanstecher, M., C. Sieverding, H. Dorschner, I. Gross, L. Aguilar-- Bryan, C. Schwanstecher, and J. Bryan. 1998. Potassium channel openers require ATP to bind to and act through sulfonylurea receptors. EMBO J. 17:5529-5535.

Shyng, S.-L., T. Ferrigni, and C. G. Nichols. 1997a. Control of rectification and gating of cloned KATP channels by the Kir6.2 subunit. J. Gen. Physiol. 110:141-153.

Shyng, S.-L., T. Ferrigni, and C. G. Nichols. 1997b. Regulation of KATP channel activity by diazoxide and MgADP: distinct functions of the two nucleotide binding folds of the sulfonylurea receptor. J. Gen. Physiol. 110:643-654.

Shyng, S.-L., and C. G. Nichols. 1997. Octameric stoichiometry of the KATP channel complex. J. Gen. PhysioL 110:655-664.

Shyng, S.-L., and C. G. Nichols. 1998. Membrane phospholipid control of nucleotide sensitivity of KATp channels. Science. 282:1138-1141. Tanabe, K., S. J. Tucker, M. Matsuo, P. Proks, F. M. Ashcroft, S. Seino,

T. Amachi, and K. Ueda. 1999. Direct photoaffinity labeling of the Kir6.2 subunit of the ATP- sensitive K+ channel by 8-azido-ATP. J. Biol. Chem. 274:3931-3933.

Tibbs, G. R., E. H. Goulding, and S. A. Siegelbaum. 1997. Allosteric activation and tuning of ligand efficacy in cyclic-nucleotide-gated channels. Nature. 386:612-615.

Trapp, S., P. Proks, S. J. Tucker, and F. M. Ashcroft. 1998. Molecular analysis of ATP-sensitive K channel gating and implications for channel inhibition by ATP. J. Gen. PhysioL 112:333-349.

Tucker, S. J., F. M. Gribble, P. Proks, S. Trapp, T. J. Ryder, T. Haug, F. Reimann, and F. M. Ashcroft. 1998. Molecular determinants of KAY channel inhibition by ATP. EMBO J. 17:3290-3296.

Tucker, S. J., F. M. Gribble, C. Zhao, S. Trapp, and F. M. Ashcroft. 1997. Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature. 387:179-183.

D. Enkvetchakul,* G. Loussouarn,^ E. Makhina,^ and C. G. Nichols^

*Division of Renal Medicine and ^Department of Cell Biology and Physiology, and Washington University School of Medicine, St. Louis, Missouri 63110 USA

Received for publication 23 August 2000 and in final form 8 November 2000.

Address reprint requests to Dr. C. G. Nichols, Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110. Tel.: 314-362-6630; Fax: 314-362-- 7463, E-mail: cnichols@cellbio.wustl.edu.

Copyright Biophysical Society Feb 2001
Provided by ProQuest Information and Learning Company. All rights Reserved

Return to Diazoxide
Home Contact Resources Exchange Links ebay