Doxorubicin chemical structure
Find information on thousands of medical conditions and prescription drugs.

Doxorubicin

Doxorubicin or adriamycin is a DNA-interacting drug widely used in chemotherapy. It is an anthracycline and structurely closely related to daunomycin, and also intercalates DNA. It is commonly used in the treatment of uterine cancer and ovarian cancer, as well as some other cancers. more...

Home
Diseases
Medicines
A
B
C
D
Dacarbazine
Dactinomycin
Dalmane
Danazol
Dantrolene
Dapoxetine
Dapsone
Daptomycin
Daraprim
Darvocet
Darvon
Daunorubicin
Daunorubicin
Daypro
DDAVP
Deca-Durabolin
Deferoxamine
Delsym
Demeclocycline
Demeclocycline
Demerol
Demulen
Denatonium
Depakene
Depakote
Depo-Provera
Desferal
Desflurane
Desipramine
Desmopressin
Desogen
Desogestrel
Desonide
Desoxyn
Desyrel
Detrol
Dexacort
Dexamethasone
Dexamfetamine
Dexedrine
Dexpanthenol
Dextran
Dextromethorphan
Dextromoramide
Dextropropoxyphene
Dextrorphan
Diabeta
Diacerein
Diacetolol
Dial
Diamox
Diazepam
Diazoxide
Dibenzepin
Diclofenac
Diclohexal
Didanosine
Dieldrin
Diethylcarbamazine
Diethylstilbestrol
Diethyltoluamide
Differin
Diflucan
Diflunisal
Digitoxin
Digoxin
Dihydrocodeine
Dihydroergotamine
Dihydrotachysterol
Dilantin
Dilaudid
Diltahexal
Diltiazem
Dimenhydrinate
Dimercaprol
Dimetapp
Dimethyl sulfoxide
Dimethyltryptamine
Dimetridazole
Diminazene
Diovan
Dioxybenzone
Diphenhydramine
Diphenoxylate
Dipipanone
Dipivefrine
Diprivan
Diprolene
Diproteverine
Dipyridamole
Disulfiram
Disulfiram
Dizocilpine
Dobutamine
Docetaxel
Docusate sodium
Dofetilide
Dolasetron
Dolobid
Dolophine
Domperidone
Donepezil
Dopamine
Dopram
Doral
Doramectin
Doriden
Dornase alfa
Doryx
Dostinex
Doxapram
Doxazosin
Doxepin
Doxil
Doxil
Doxorubicin
Doxy
Doxycycline
Doxyhexal
Doxylamine
Drisdol
Drixoral
Dronabinol
Droperidol
Drospirenone
Duloxetine
Durabolin
Duragesic
Duraphyl
Duraquin
Dutasteride
Dv
Dyclonine
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

Doxil® is a liposome-encapsulated dosage form of doxorubicin made by Johnson & Johnson. Its main benefits are a reduction in cardiotoxicity. It follows the similar preparation of daunorubicin in a liposomal carrier.

Mechanism of Action

Doxorubicin acts by binding to DNA where it can inhibit the progression of the enzyme topoisomerase II, which unwinds DNA for transcription. Doxorubicin stabilises the topoisomerase II complex after it has broken the DNA chain for replication, preventing the DNA double helix from being resealed and thereby stopping the process of replication.

Side Effects

Acute side-effects of doxorubicin are nausea, vomiting, decrease in white blood cells and hair loss. When the cumulative dose of doxorubicin reaches 450mg/m2, the risk of congestive heart failure dramatically increases.

Clinical Use

Doxorubicin is a commonly used to treat Hodgkins disease, breast cancer, lung cancer, soft tissue sarcoma, Kahlers disease.

Read more at Wikipedia.org


[List your site here Free!]


Effects of melatonin on doxorubicin cytotoxicity in sensitive and pleiotropically resistant tumor cells - Abstracts: recently published abstracts
From Alternative Medicine Review, 12/1/01

Melatonin has been reported to attenuate the oxidative damage caused by doxorubicin on kidney, brain, heart and bone marrow, whereas the in vivo antitumor effects of doxorubicin were not attenuated. The effects of melatonin on doxorubicin cytotoxicity have, therefore, been examined on human normal mammary epithelium HBL-100, on mammary adenocarcinoma MCF-7, on colon carcinoma LoVo, and on mouse P388 leukemia cell lines, and on tumor cell sublines pleiotropically resistant to anthracyclines. Melatonin in the concentration range 10-2000 pg/ mL causes an inhibition of the growth of the human cell lines examined which is not clearly dose-dependent and less than 25% when significant. Melatonin similarly causes minor effects on doxorubicin cytotoxicity either on the parental human cell lines or on their resistant sublines. On the contrary, 200-1000 pg/mL melatonin cause a significant and dose-dependent partial sensitization to doxorubicin of resistant P388 mouse leukemia (P388/ ADR), which occurs also in vivo, as indicated by a significant increase in survival time of the hosts. Doxorubicin intracellular concentrations in P388/ADR cells are increased by melatonin, suggesting that melatonin might inhibit P-glycoprotein-mediated doxorubicin efflux from the cells. These results indicate that the use of melatonin in clinical cancer treatment should not pose the risk of an attenuation of the effectiveness of doxorubicin, and encourage the further examination of the possible reduction by melatonin of the host toxicity of antitumor chemotherapy.

Granzotto M, Rapozzi V, Decorti G, Giraldi T. J Pineal Res 2001;31:206-213.

COPYRIGHT 2001 Thorne Research Inc.
COPYRIGHT 2002 Gale Group

Return to Doxorubicin
Home Contact Resources Exchange Links ebay