Find information on thousands of medical conditions and prescription drugs.

Hereditary fructose intolerance

Fructose intolerance is a hereditary condition due to a deficiency of liver enzymes that metabolise fructose. Not to be confused with fructose malabsorption, a deficiency of fructose transporter enzyme in the enterocytes, which leads to abdominal bloating and diarrhea. the deficient enzyme is Fructose-1-phosphate aldolase, this means that the fructose cannot be further metabolised beyond fructose-1-phosphate. This traps phosphates; which are needed to phosphorolyse glycogen phosphorolase to carry on to make glucose. therefore glucose cannot be made through the breakdown of glycogen nor from gluconeogenesis, resulting in severe hypoglycaemia. If fructose is ingested, vomiting, hypoglycaemia and evetually kidney failure will follow. more...

Home
Diseases
A
B
C
D
E
F
G
H
Hairy cell leukemia
Hallermann Streiff syndrome
Hallux valgus
Hantavirosis
Hantavirus pulmonary...
HARD syndrome
Harlequin type ichthyosis
Harpaxophobia
Hartnup disease
Hashimoto's thyroiditis
Hearing impairment
Hearing loss
Heart block
Heavy metal poisoning
Heliophobia
HELLP syndrome
Helminthiasis
Hemangioendothelioma
Hemangioma
Hemangiopericytoma
Hemifacial microsomia
Hemiplegia
Hemoglobinopathy
Hemoglobinuria
Hemolytic-uremic syndrome
Hemophilia A
Hemophobia
Hemorrhagic fever
Hemothorax
Hepatic encephalopathy
Hepatitis
Hepatitis A
Hepatitis B
Hepatitis C
Hepatitis D
Hepatoblastoma
Hepatocellular carcinoma
Hepatorenal syndrome
Hereditary amyloidosis
Hereditary angioedema
Hereditary ataxia
Hereditary ceroid...
Hereditary coproporphyria
Hereditary elliptocytosis
Hereditary fructose...
Hereditary hemochromatosis
Hereditary hemorrhagic...
Hereditary...
Hereditary spastic...
Hereditary spherocytosis
Hermansky-Pudlak syndrome
Hermaphroditism
Herpangina
Herpes zoster
Herpes zoster oticus
Herpetophobia
Heterophobia
Hiccups
Hidradenitis suppurativa
HIDS
Hip dysplasia
Hirschsprung's disease
Histoplasmosis
Hodgkin lymphoma
Hodgkin's disease
Hodophobia
Holocarboxylase...
Holoprosencephaly
Homocystinuria
Horner's syndrome
Horseshoe kidney
Howell-Evans syndrome
Human parvovirus B19...
Hunter syndrome
Huntington's disease
Hurler syndrome
Hutchinson Gilford...
Hutchinson-Gilford syndrome
Hydatidiform mole
Hydatidosis
Hydranencephaly
Hydrocephalus
Hydronephrosis
Hydrophobia
Hydrops fetalis
Hymenolepiasis
Hyperaldosteronism
Hyperammonemia
Hyperandrogenism
Hyperbilirubinemia
Hypercalcemia
Hypercholesterolemia
Hyperchylomicronemia
Hypereosinophilic syndrome
Hyperhidrosis
Hyperimmunoglobinemia D...
Hyperkalemia
Hyperkalemic periodic...
Hyperlipoproteinemia
Hyperlipoproteinemia type I
Hyperlipoproteinemia type II
Hyperlipoproteinemia type...
Hyperlipoproteinemia type IV
Hyperlipoproteinemia type V
Hyperlysinemia
Hyperparathyroidism
Hyperprolactinemia
Hyperreflexia
Hypertension
Hypertensive retinopathy
Hyperthermia
Hyperthyroidism
Hypertrophic cardiomyopathy
Hypoaldosteronism
Hypocalcemia
Hypochondrogenesis
Hypochondroplasia
Hypoglycemia
Hypogonadism
Hypokalemia
Hypokalemic periodic...
Hypoparathyroidism
Hypophosphatasia
Hypopituitarism
Hypoplastic left heart...
Hypoprothrombinemia
Hypothalamic dysfunction
Hypothermia
Hypothyroidism
Hypoxia
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Medicines

JzaJenius

Read more at Wikipedia.org


[List your site here Free!]


Renal tubular acidosis
From Gale Encyclopedia of Medicine, 4/6/01 by J. Ricker Polsdorfer

Definition

Renal tubular acidosis (RTA) is a condition characterized by too much acid in the body due to a defect in kidney function.

Description

Chemical balance is critical to the body's functioning. Therefore, the body controls its chemicals very strictly. The acid-base balance must be between a pH of 7.35 and 7.45 or trouble will start. Every other chemical in the body is affected by the acid-base balance. The most important chemicals in this system are sodium, chloride, potassium, calcium, ammonium, carbon dioxide, oxygen, and phosphates.

The lungs rapidly adjust acid-base balance by the speed of breathing, because carbon dioxide dissolved in water is an acid--carbonic acid. Faster breathing eliminates more carbon dioxide, decreases the carbonic acid in the blood and increases the pH. Holding your breath does the opposite. Blood acidity from carbon dioxide controls the rate of breathing, not oxygen.

The kidneys also regulate acid-base balance somewhat more slowly than the lungs. They handle all the chemicals, often trading one for another that is more or less acidic. The trading takes place between the blood and the urine, so that extra chemicals end up passing out of the body. If the kidneys do not effectively eliminate acid, it builds up in the blood, leading to a condition called metabolic acidosis. These conditions are called renal tubular acidosis.

Causes & symptoms

There are three types of renal tubular acidosis. They include:

  • Distal renal tubular acidosis (type 1) may be a hereditary condition or may be triggered by an autoimmune disease, lithium therapy, kidney transplantation, or chronic obstruction.
  • Proximal renal tubular acidosis (type 2) is caused by hereditary diseases, such as Fanconi's syndrome, fructose intolerance, and Lowe's syndrome. It can also develop with vitamin D deficiency, kidney transplantation, heavy metal poisoning, and treatment with certain drugs.
  • Type 4 renal tubular acidosis is not hereditary, but is associated with diabetes mellitus, sickle cell anemia, an autoimmune disease, or an obstructed urinary tract.

Symptoms vary with the underlying mechanism of the defect and the readjustment of chemicals required to compensate for the defect.

  • Distal RTA results in high blood acidity and low blood potassium levels. Symptoms include mild dehydration; muscle weakness or paralysis (due to potassium deficiency); kidney stones (due to excess calcium in the urine); and bone fragility and pain.
  • Proximal RTA also results in high blood acidity and low blood potassium levels. Symptoms include mild dehydration.
  • Type 4 RTA is characterized by high blood acidity and high blood potassium levels; it rarely causes symptoms unless potassium levels rise so high as to cause heart arrhythmias or muscle paralysis.

Diagnosis

RTA is suspected when a person has certain symptoms indicative of the disease or when routine tests show high blood acid levels and low blood potassium levels. From there, more testing of blood and urine chemicals will help determine the type of RTA present.

Treatment

The foundation of treatment for RTA types 1 and 2 is replacement of alkali (base) by drinking a bicarbonate solution daily. Potassium may also have to be replaced, and other chemicals added to maintain balance. In type 4 RTA acidity will normalize if potassium is reduced. This is done by changing the diet and by using diuretic medicines that promote potassium excretion in the urine.

Prognosis

Careful balancing of body chemicals will usually produce good results. If there is an underlying disease responsible for the kidney malfunction, it may be the determining factor in the prognosis.

Prevention

Relatives of patients with the possibly hereditary forms of renal tubular acidosis should be tested.

Key Terms

Autoimmune disease
Type of diseases characterized by antibodies that attack the body's own tissues.
Fanconi's syndrome
A disorder of the kidneys characterized by glucose in the urine.
Lowe's syndrome
A rare inherited disorder that is distinguished by congenital cataracts, glaucoma, and severe mental retardation.
Rickets
A deficiency disease that effects the bone development of growing bodies, usually causing soft bones.

Further Reading

For Your Information

    Books

  • Chesney, Russell W. "Specific Renal Tubular Disorders." In Cecil Textbook of Medicine. Edited by J. Claude Bennett and Fred Plum. Philadelphia: W. B. Saunders, 1996.

Gale Encyclopedia of Medicine. Gale Research, 1999.

Return to Hereditary fructose intolerance
Home Contact Resources Exchange Links ebay