Find information on thousands of medical conditions and prescription drugs.

Proctitis

Proctitis is an inflammation of the rectum. more...

Home
Diseases
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Arthritis
Arthritis
Bubonic plague
Hypokalemia
Pachydermoperiostosis
Pachygyria
Pacman syndrome
Paget's disease of bone
Paget's disease of the...
Palmoplantar Keratoderma
Pancreas divisum
Pancreatic cancer
Panhypopituitarism
Panic disorder
Panniculitis
Panophobia
Panthophobia
Papilledema
Paraganglioma
Paramyotonia congenita
Paraphilia
Paraplegia
Parapsoriasis
Parasitophobia
Parkinson's disease
Parkinson's disease
Parkinsonism
Paroxysmal nocturnal...
Patau syndrome
Patent ductus arteriosus
Pathophobia
Patterson...
Pediculosis
Pelizaeus-Merzbacher disease
Pelvic inflammatory disease
Pelvic lipomatosis
Pemphigus
Pemphigus
Pemphigus
Pendred syndrome
Periarteritis nodosa
Perinatal infections
Periodontal disease
Peripartum cardiomyopathy
Peripheral neuropathy
Peritonitis
Periventricular leukomalacia
Pernicious anemia
Perniosis
Persistent sexual arousal...
Pertussis
Pes planus
Peutz-Jeghers syndrome
Peyronie disease
Pfeiffer syndrome
Pharmacophobia
Phenylketonuria
Pheochromocytoma
Photosensitive epilepsy
Pica (disorder)
Pickardt syndrome
Pili multigemini
Pilonidal cyst
Pinta
PIRA
Pityriasis lichenoides...
Pityriasis lichenoides et...
Pityriasis rubra pilaris
Placental abruption
Pleural effusion
Pleurisy
Pleuritis
Plummer-Vinson syndrome
Pneumoconiosis
Pneumocystis jiroveci...
Pneumocystosis
Pneumonia, eosinophilic
Pneumothorax
POEMS syndrome
Poland syndrome
Poliomyelitis
Polyarteritis nodosa
Polyarthritis
Polychondritis
Polycystic kidney disease
Polycystic ovarian syndrome
Polycythemia vera
Polydactyly
Polymyalgia rheumatica
Polymyositis
Polyostotic fibrous...
Pompe's disease
Popliteal pterygium syndrome
Porencephaly
Porphyria
Porphyria cutanea tarda
Portal hypertension
Portal vein thrombosis
Post Polio syndrome
Post-traumatic stress...
Postural hypotension
Potophobia
Poxviridae disease
Prader-Willi syndrome
Precocious puberty
Preeclampsia
Premature aging
Premenstrual dysphoric...
Presbycusis
Primary biliary cirrhosis
Primary ciliary dyskinesia
Primary hyperparathyroidism
Primary lateral sclerosis
Primary progressive aphasia
Primary pulmonary...
Primary sclerosing...
Prinzmetal's variant angina
Proconvertin deficiency,...
Proctitis
Progeria
Progressive external...
Progressive multifocal...
Progressive supranuclear...
Prostatitis
Protein S deficiency
Protein-energy malnutrition
Proteus syndrome
Prune belly syndrome
Pseudocholinesterase...
Pseudogout
Pseudohermaphroditism
Pseudohypoparathyroidism
Pseudomyxoma peritonei
Pseudotumor cerebri
Pseudovaginal...
Pseudoxanthoma elasticum
Psittacosis
Psoriasis
Psychogenic polydipsia
Psychophysiologic Disorders
Pterygium
Ptosis
Pubic lice
Puerperal fever
Pulmonary alveolar...
Pulmonary hypertension
Pulmonary sequestration
Pulmonary valve stenosis
Pulmonic stenosis
Pure red cell aplasia
Purpura
Purpura, Schoenlein-Henoch
Purpura, thrombotic...
Pyelonephritis
Pyoderma gangrenosum
Pyomyositis
Pyrexiophobia
Pyrophobia
Pyropoikilocytosis
Pyrosis
Pyruvate kinase deficiency
Uveitis
Q
R
S
T
U
V
W
X
Y
Z
Medicines

Symptoms

Symptoms are ineffectual straining to empty the bowels, diarrhea, and often bleeding.

Causes

Proctitis is invariably present in ulcerative colitis and sometimes in Crohn's disease. It may also occur independently (idiopathic proctitis). Rarer causes include damage by irradiation (for example in radiation therapy for cervical cancer) or as a Sexually-transmitted infection, as in lymphogranuloma venereum and herpes proctitis.

Read more at Wikipedia.org


[List your site here Free!]


Slow epidemic of lymphogranuloma venereum L2b strain
From Emerging Infectious Diseases, 11/1/05 by Joke Spaargaren

We traced the Chlamydia trachomatis L2b variant in Amsterdam and San Francisco. All recent lymphogranuloma ma venereum cases in Amsterdam were caused by the L2b variant. This variant was also present in the 1980s in San Francisco. Thus, the current "outbreak" is most likely a slowly evolving epidemic.

**********

Since the end of 2003, an ongoing lymphogranuloma venereum (LGV) proctitis outbreak has been reported in industrialized countries, first in the Netherlands, followed by neighboring European countries and the United Kingdom, and now in the United States and Canada (1-4). We recently identified a new LGV variant designated L2b (GenBank accession no. AY586530) in all our cases in 2002 and 2003 that suggests this LGV outbreak was new (5). Until now, only men who have sex with men (MSM are affected, and most are HIV co-infected. Although these infections, which ean be caused by LGV serovars L1, L2, L2a, and L3, are often characterized by severe inflammatory symptoms, delayed or incorrect diagnosis has increased both the risk for transmission and the development of severe sequelae. Successful treatment of LGV proctitis requires a 3-week course of doxycycline followed by a test of cure, whereas in the case of Chlamydia trachomatis proctitis caused by serovars D-K, a 1-week course will suffice.

In a recent article on this LGV outbreak (3), 2 issues were stressed: 1) the lack of an easy diagnostic tool and 2) whether lymphogranuloma venereum is a new problem or whether it has been present but undiagnosed. Indeed, among the obstacles to the correct diagnosis of LGV is the lack of a commercially available assay to specifically distinguish between C. trachomatis infections caused by LGV serovars and infections caused by less invasive C. trachomatis serovars. A definitive diagnosis of LGV is currently made with nucleic acid sequence-based tests, like polymerase chain reaction (PCR)-based restriction fragment length polymorphism (RFLP) analysis, which are only available in a few specialized laboratories. We recently developed a real-time PCR (TaqMan and RotorGene) that can specifically distinguish LGV infections from infections with other C. trachomatis serovars, which facilitates diagnosis (6).

We used this new diagnostic tool to determine whether the LGV outbreak and its cause are a new phenomenon or whether LGV C. trachomatis serovars have been present much longer but have gone undiagnosed. First, we determined if the newly identified Amsterdam L2b variant was already present in the MSM population before 2002 by using stored samples collected from MSM with and without proctitis who sought treatment at the sexually transmitted infections (STI) outpatient clinic in Amsterdam. Second, we performed the same analysis on archived specimens from MSM in San Francisco, California, collected 20-25 years ago.

The Study

From MSM who attended the Amsterdam Municipal Health Service STI Outpatient Clinic in 2000 and 2001, randomly selected stored specimens of C. trachomatis DNA-positive (as assessed by ligase chain reaction, Abbott Laboratories, Chicago, IL, USA) rectal samples were tested for the C. trachomatis variant by real-time PCR (6). From 2002 to 2005, MSM with symptomatic proctitis (i.e., purulent discharge, rectal ulceration, bleeding, or edematous mucosa) and MSM without symptoms were included.

From the San Francisco region, 51 LGV-positive isolates from symptomatic MSM were analyzed (7). The isolates were collected in medical clinics (e.g., ambulatory care, emergency room, screening, acute care) from 1979 to 1985 (Table). LGV was assessed at the time of collection, according to phenotypic properties observed during cell culture. Although the growth characteristics of LGV serovars can be distinguished from serovars D-K, cell culture for C. trachomatis is no longer available in most clinical settings.

C. trachomatis serovar typing was performed as described previously (5). Briefly, amplification of the ompA gene (1.1 kb) was performed in a nested PCR format. Serovars and variants were initially identified by their RFLP patterns after polyacrylamide gel electrophoresis. The ompA nucleotide sequences were subsequently analyzed by automated DNA sequencing on an ABI 310 sequencer (PE Biosystems, Foster City, CA, USA). The sequences obtained from C. trachomatis--infected MSM in 2000 and 2001 in Amsterdam and from MSM in San Francisco were compared to the recently identified L2b variant to determine if the strain was present earlier. The Table presents the results of this analysis.

In the Amsterdam C. trachomatis DNA-positive rectal samples, LGV strains were detected by real-time PCR in 2 of 67 samples in 2000 and in 4 of 28 samples in 2001. Sequencing showed that in all 6 LGV strain-positive samples, the L2b variant was present. Also in 2002 and 2003, 109 L2b-positive samples of 403 C. trachomatis DNA-positive rectal samples were identified, of which 45 were strain L2b, and these have been described in a previous publication (5). All 51 San Francisco specimens (from 51 patients) were positive for LGV variants by real-time PCR. By sequencing variable segment 2 of the ompA gene (VS-2), we identified 15 as serovar L1, 18 as serovar L2 prototype, and 18 as the L2b variant. We sequenced the complete ompA gene of 5 of these 18 L2b variants that originated in San Francisco; all were identical to the recently described L2b variant circulating in Amsterdam. Four nucleotide changes were found when compared to reference serovars L2, L2a, and the variant L2', including 1 change that encoded the previously undescribed change at amino acid 162, AAT [right arrow] AGT (5).

Conclusions

The L2b LGV variant identified as the cause of all the LGV proctitis in the recent outbreak among MSM in Amsterdam appears to have been circulating in Amsterdam in 2000. Moreover, we showed that this L2b variant was present in the 1980s in San Francisco with exactly the same mutations in the complete ompA gene. However, since we only sequenced the ompA gene, and although the sequence was identical in old and new L2b strains, we cannot exclude the possibility that it could involve different strains of C. trachomatis that differ in other parts of the genome, although this is unlikely.

Since LGV causes potentially severe infections with possibly irreversible sequelae if adequate treatment is not begun promptly, early and accurate diagnosis is essential. Sequence-based nucleic-acid tests that can discriminate between LGV serovars and less invasive C. trachomatis species can help detect cases and prevent further transmission of LGV.

In conclusion, our results suggest that we are dealing with the same LGV variant >25 years later, and the current LGV outbreak in industrialized countries has most likely been a slowly evolving epidemic with an organism that has gone unnoticed in the community for many years and is now being detected by new technologies. The numbers detected in 2005 in Amsterdam suggest that a considerable reservoir exists, which emphasizes the need for ongoing public health awareness.

References

(1.) Nieuwenhuis RF, Ossewaarde JM, Gotz HM, Dees J, Thio HB, Thomeer MG, et al. Resurgence of lymphogranuloma venereum in Western Europe: an outbreak of Chlamydia trachomatis serovar 12 proctitis in the Netherlands among men who have sex with men. Clin Infect Dis. 2004;39:996-1003.

(2.) French P, Ison CA, Macdonald N. Lymphogranuloma venereum in the United Kingdom. Sex Transm Infect. 2005;81:97-8.

(3.) Blank S, Schillinger JA, Harbatkin D. Lymphogranuloma venereum in the industrialised world. Lancet. 2005;365:1607-8.

(4.) Kropp RY, Wong T. Emergence of lymphogranuloma venereum in Canada. CMAJ. 2005; 172:1674-6.

(5.) Spaargaren J, Fennema JSA, Morre SA, de Vries HJC, Coutinho RA. New lymphogranuloma venereum Chlamydia trachomatis variant, Amsterdam. Emerg Infect Dis. 2005; 11:1090-2.

(6.) Morre SA, Spaargaren J, Fennema JSA, de Vries HJC, Coutinho RA, Pena AS. Real-time polymerase chain reaction to diagnose lymphogranuloma venereum. Emerg Infect Dis. 2005; 11:1311-2.

(7.) Schachter J, Moncada J. Lymphogranuloma venereum: how to turn an endemic disease into an outbreak of a new disease? Start looking. Sex Transm Dis. 2005;32:331-2.

Ms Spaargaren is a medical microbiologist in charge of the public health laboratory of the Municipal Health Service of Amsterdam. One of her research interests is the epidemiology, pathogenesis, and immunogenesis of C. trachomatis infections in the human urogenital tract.

Address for correspondence: Servaas A. Morre, Laboratory of Immunogenetics, Section Immunogenetics of Infectious Diseases, Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands; fax: 31-20-444-8418; email: samorretravel@yahoo.co.uk

Joke Spaargaren, * Julius Schachter, ([dagger]) Jeanne Moncada, ([dagger]) Henry J.C. de Vries, * ([double dagger]) Han S.A. Fennema, * A. Salvador Pena, ([section]) Roel A. Coutinho, * ([paragraph]) and Servaas A. Morre ([section])

* Municipal Health Service, Amsterdam, the Netherlands; ([dagger]) University of California--San Francisco, San Francisco, California, USA; ([double dagger]) Academic Medical Centre, Amsterdam, the Netherlands; ([section]) VU Amsterdam Medical Centre, Amsterdam, the Netherlands; and ([paragraph]) National Institute of Public Health and Environment, Bilthoven, the Netherlands

COPYRIGHT 2005 U.S. National Center for Infectious Diseases
COPYRIGHT 2005 Gale Group

Return to Proctitis
Home Contact Resources Exchange Links ebay