Find information on thousands of medical conditions and prescription drugs.

Dandy-Walker syndrome

Dandy-Walker syndrome is a congenital brain malformation involving the cerebellum and the fluid filled spaces around it. The key features of this syndrome are an enlargement of the fourth ventricle (a small channel that allows fluid to flow freely between the upper and lower areas of the brain and spinal cord), a partial or complete absence of the cerebellar vermis (the area between the two cerebellar hemispheres) and cyst formation near the internal base of the skull. An increase in the size of the fluid spaces surrounding the brain as well as an increase in pressure may also be present. The syndrome can appear dramatically or develop unnoticed. more...

Home
Diseases
A
B
C
D
Dandy-Walker syndrome
Darier's disease
Dementophobia
Demyelinating disease
Dendrophobia
Dengue fever
Dental fluorosis
Dentinogenesis imperfecta
Dentophobia
Depersonalization disorder
Dermatitis herpetiformis
Dermatofibroma
Dermatographic urticaria
Dermatomyositis
Dermatophytosis
Desmoplastic small round...
Dextrocardia
Diabetes insipidus
Diabetes mellitus
Diabetes, insulin dependent
Diabetic angiopathy
Diabetic nephropathy
Diabetic neuropathy
Diamond Blackfan disease
Diastrophic dysplasia
Dibasic aminoaciduria 2
Diethylstilbestrol...
DiGeorge syndrome
Dilated cardiomyopathy
Diphallia
Diphtheria
Dipsophobia
Dissociative amnesia
Dissociative fugue
Dissociative identity...
Distemper
Diverticulitis
Diverticulosis
Dk phocomelia syndrome
Doraphobia
Double outlet right...
Downs Syndrome
Dracunculiasis
Duane syndrome
Dubin-Johnson syndrome
Dubowitz syndrome
Duchenne muscular dystrophy
Dupuytren's contracture
Dwarfism
Dysbarism
Dysgerminoma
Dyskeratosis congenita
Dyskinesia
Dysmorphophobia
Dysplasia
Dysplastic nevus syndrome
Dysthymia
Dystonia
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Medicines

Symptoms, which often occur in early infancy, include slow motor development and progressive enlargement of the skull. In older children, symptoms of increased intracranial pressure such as irritability, vomiting and convulsions and signs of cerebellar dysfunction such as unsteadiness, lack of muscle coordination or jerky movements of the eyes may occur. Other symptoms include increased head circumference, bulging at the back of the skull, problems with the nerves that control the eyes, face and neck, and abnormal breathing patterns. Dandy-Walker Syndrome is frequently associated with disorders of other areas of the central nervous system including absence of the corpus callosum (the connecting area between the two cerebral hemispheres, and malformations of the heart, face, limbs, fingers and toes.

Treatment

Treatment for individuals with Dandy-Walker Syndrome generally consists of treating the associated problems, if needed. A special tube to reduce intracranial pressure may be placed inside the skull to control swelling. Parents of children with Dandy Walker Syndrome may benefit from genetic counseling if they intend to have more children.

Prognosis

Children with Dandy-Walker Syndrome may never have normal intellectual development, even when the hydrocephalus is treated early and correctly. Longevity depends on the severity of the syndrome and associated malformations. The presence of multiple congenital defects may shorten life span.

Read more at Wikipedia.org


[List your site here Free!]


Ultrasonic encephalography
From Encyclopedia of Nursing and Allied Health, by M.S. Michelle L. Johnson, J.D.

Definition

Ultrasonic encephalography, or echoencephalography, is the use of ultrasound to produce a noninvasive diagnostic image of the brain and its structures, including the alignment down the midline, the size of ventricles, and the presence of bleeding or tumors.

Purpose

Ultrasonic encephalography is a noninvasive way to create images of the brain. Also called intracranial ultrasound or head ultrasound, the test is most commonly used on children under the age of two to diagnose hemorrhage or hydrocephalus (enlargement of the head due to accumulation of fluid). It is particularly useful in the neonatal intensive care unit to provide bedside monitoring of premature babies who are at higher risk for hemorrhage. A series of tests are commonly ordered for babies born earlier than 34 weeks of gestation.

Ultrasonic encephalography can also detect the swelling inside the head (cerebral edema), as shown by an increase in the size of the lateral ventricles, sometimes seen in diabetic children. The test can be used in adults to monitor the size of the ventricles or to determine a shift in the structure of the brain from midline due to swelling or a tumor. However, for adults and older children, this test has been largely replaced by computed tomography (CT).

Precautions

There are no contraindications to ultrasonic encephalography.

Description

Ultrasonic encephalography uses ultrasound to produce diagnostic images of the brain. Ultrasonic waves are sound in the range above what normally can be heard by the human ear, anything above 20,000 Hertz (cycles per second) in frequency. Ultrasonic encephalography generally uses high frequency sounds waves, in the ranges of 5 to 10 MHz.

Sound waves can produce an image of the brain because of the different densities present in the tissue of the brain, blood, or tumor and the cerebrospinal fluid within the ventricles. Matter of different density reflects, or echoes, the sound waves differently, allowing the machine to distinguish between the structures.

The fineness of the distinguishing process is known as resolution. Resolution is affected by the frequency of sound waves used. As frequency increases, resolution increases. However, an increase in frequency reduces the ability of the sound waves to penetrate into the brain. Because of this relationship, successful ultrasonic encephalograms often zero in on the structures of interest, maximizing the resolution by using the highest frequency that penetrates sufficiently into the head.

A main reason why ultrasonic encephalography is used in newborns and children under the age of two is the presence of the anterior and posterior fontanelle, triangular structures at the top and back of the head where bones of the skull have not yet fused. As bone is a poor conductor of ultrasonic waves, the fontanelles provides convenient conduits into and out of the brain for the ultrasound pulses. Once the bones have fused together, the resolution of the ultrasound is greatly reduced by having to pass through bone in order to visualize the brain.

Ultrasonic encephalography involves sending ultrasonic waves through the top of the head, bouncing them off the brain structures, and recording the resulting echo. The results of the test can be produced in a plotted graphic form, known as an A-mode echo or in a two-dimensional mode. In A-mode, one axis represents the time required for the return of the echo and the other corresponds to the strength of the echo. A 2-D echo produces a cross-sectional image of the brain. As of mid-2000, 3-D imaging of the neonatal brain was still in experimental stages, with poor visualization as compared to 2-D images.

The ultrasound unit used for echoencephalography includes a TV monitor (cathode ray tube or CRT), a transducer for sending and receiving the ultrasonic waves, the transmitter, the receiver, the amplifier, and recording devices. The transducer is a hand-held instrument that is generally used both to transmit sound waves and to receive the echoes. The transducer includes the element, electrode connections to the transmitter and the receiver, backing material, a matching layer, and a protective face.

The element is the core of the transducer, the material that actually produces the sound waves. Elements are built around piezoelectric ceramic (e.g. barium titanate or lead zirconate titanate) chips. (Piezoelectric refers to electricity that is produced when pressure is put on certain crystals such as quartz.) These ceramic chips react to electric pulses by producing sound waves (they are transmitting waves) and react to sound waves by producing electric pulses (receiving). Bursts of high-frequency electric pulses supplied to the transducer by the transmitter cause it to produce the scanning sound waves. The transducer then receives the returning echoes, translates them back into electric pulses, and sends them to the receiver. The backing material helps to focus the sound energy into the element, while the matching layer helps to reduce reflection of the sound from the transducer surface. The protective face shields the internal components of the transducer. Electrodes connect the transmitter and the receiver to the transducer. The amplifier boosts the returning signals and prepares them to be displayed on the TV monitor (CRT).

Preparation

The patient who is undergoing an ultrasonic encephalogram is laid on his or her back or side and must be still during the test. It is suggested that children two months to one year of age do not eat or drink for three hours before the test, so a bottle can be drunk during the exam. Particular care must be taken if the child is connected to a respirator. Warmed conducting gel is placed on the head to ensure an air-free contact between the transducer and the head (air is a very poor conductor of ultrasound) and to allow the transducer to slide easily.

The area that provides the least amount of interference with the ultrasound waves is called the acoustic window. For infants and young children, the best acoustic windows are transfontanelle, that is, through either the posterior or anterior fontanelle. Some standard views from the anterior fontanelle include midline sagittal (viewed from the side, through the midline, or middle of the head), lateral sagittal (viewed from the side, displaced from the midline), and coronal views (viewed from the front, angled toward the back, middle, and front). Axial views (across the temple) can be used, despite the reverberation artifacts caused by the skull, to follow lateral ventricle size.

An ultrasonic encephalogram is noninvasive, causes no pain, and takes about 20-30 minutes.

Aftercare

After the test, the patient can return to regular daily activities and meals.

Complications

There are no complications or side effects of ultrasonic encephalography.

Results

Ultrasonic encephalograms are mainly performed for the diagnosis and follow-up of neonatal hemorrhage, hydrocephalus, and congenital malformations. Premature infants often develop bleeding in the germinal matrix of the caudate nucleus. The caudate nucleus is an elongated, arched gray mass in the center of the brain next to the lateral ventricles, and the germinal matrix is a group of brain cells in that area that is still developing. Bleeding can also occur in the choroid plexus (spongy tissue of the ventricles) and rarely, the cerebellum. If the bleeding is severe it can leak into the ventricle, a problem known as intraventricular hemorrhage (IVH). All of these bleeding problems can be seen initially as echogenic areas (white areas) that later can be replaced by fluid-filled cysts that scan as dark areas.

Bleeding in the neonate is sometimes associated with the later development of cerebral palsy, although other risk factors, such as bronchopulmonary dysplasia (BPD) appear to be equally predictive.

When looking for hydrocephalus, measurements of the ventricles are done. On a lateral sagittal view, the distance from the curve of the choroid plexus to the tip of the occipital horn generally should not be more than 16 mm. Using a coronal view, the body of the lateral ventricle should generally not be more than 3 mm. Finally, an axial view is often used to determine the lateral ventricular ratio, which is the lateral ventricular width divided by the hemispheric width (both widths measured from the outer border to the midline). The ratio is compared to previous measurements to see if swelling is developing.

There are many congenital malformations of the brain that can be either diagnosed or the severity determined with ultrasonic encephalography. Some representative examples include microcephaly, holoprosencephaly, Dandy-Walker Syndrome, and encephalocele. These conditions can have serious prognoses, so ultrasound is an effective means of determining what treatment, such as placement of a shunt or surgery, should take place.

Health care team roles

Ultrasonic encephalograms are often produced by specially trained ultrasound technologists. Training for such a position usually involves study at a two-year college or vocational program. A typical program would include:

  • elementary principles of ultrasound

  • ultrasound transducers

  • pulse-echo principles & instrumentation

  • ultrasound image storage & display

  • artifacts (erroneous results)

  • quality assurance

  • bioeffects and safety

Certification of ultrasound technologists specializing in neurological work such as ultrasonic encephalography is available through the American Registry of Diagnostic Medical Sonographers as a registered diagnostic medical sonographer with a specialty in neurosonology. Certification requires passing both a general and a specialized test.

A physician such as pediatrician, neonatologist, or radiologist does the final review and diagnosis based on the results of an ultrasonic encephalogram. The doctor can be present for the exam or may review saved images.

Key Terms

Acoustic window
Area through which ultrasound waves move freely.

Congenital malformation
A deformity present at birth.

Echogenic
Highly reflective of ultrasound waves; these tissues show as a white area in the scan.

Hemorrhage
Bleeding, the escape of blood from the vessels.

Hydrocephalus
A congenital or acquired condition characterized by an increase in size of the cerebral ventricles. Without treatment it can cause enlargement of the head, brain shrinkage, mental deterioration, and convulsions.

Intracranial
Inside the skull.

Ventricle
A small cavity in the brain. Humans have two lateral ventricles, a third ventricle, and a fourth ventricle.

Return to Dandy-Walker syndrome
Home Contact Resources Exchange Links ebay