Gonadorelin
Gonadotropin-releasing hormone 1 (GNRH1) is a peptide hormone responsible for the release of FSH and LH from the anterior pituitary. GNRH1 is synthesized and released by the hypothalamus. more...
Gene
The gene, GNRH1, for the GNRH1 precursor is located on chromosome 8. This precursor contains 92 amino acids and is processed to GNRH1, a decapeptide (10 amino acids).
Structure
The identity of GNRH1 was clarified by the 1977 Nobel Laureates Roger Guillemin and Andrew V. Schally:
pyroGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly CONH2.
GNRH1 as a neurohormone
GNRH1 is considered a neurohormone, a hormone produced in a specific neural cell and released at its neural terminal. A key area for production of GNRH1 is the preoptic area of the hypothalamus, that contains most of the GNRH1-secreting neurons. GNRH1 is secreted in the portal bloodstream at the median eminence. The portal blood carries the GNRH1 to the pituitary gland, which contains the the gonadotrope cells, where GNRH1 activates its own receptor, gonadotropin-releasing hormone receptor (GNRHR), located in the cell membrane.
GNRH1 is degradated by proteolysis within a few minutes.
Control of FSH and LH
At the pituitary, GNRH1 stimulates the synthesis and secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). These processes are controlled by the size and frequency of GNRH1 pulses, as well as by feedback from androgens and estrogens.
There are differences in GNRH1 secretion between males and females: In males, GNRH1 is secreted in pulses at a constant frequency, but in females the frequency of the pulses varies during the menstrual cycle and there is a large surge of GNRH1 just before ovulation.
GNRH1 secretion is pulsatile in all vertebrates, and is necessary for correct reproductive function. Thus, a single hormone, GNRH1, controls a complex process of follicular growth, ovulation, and corpus luteum maintenance in the female, and spermatogenesis in the male.
Activity
GNRH1 activity is very low during childhood, and is activated at puberty. During the reproductive years, pulse activity is critical for successful reproductive function as controlled by feedback loops. However, once a pregnancy is established, GNRH1 activity is not required. Pulsatile activity can be disrupted by hypothalamic-pituitary disease, either dysfunction (i.e., hypothalamic suppression) or organic lesions (trauma, tumor). Elevated prolactin levels decrease GNRH1 activity. In contrast, hyperinsulinemia increases pulse activity leading to disordery LH and FSH activity, as seen in Polycystic ovary syndrome (PCOS). GNRH1 formation is congenitally absent in Kallmann syndrome.
The GNRH1 neurons are regulated by many different afferent neurons, using several different transmitters (including norepinephrine, GABA, glutamate). For instance, dopamine appears to decrease GNRH1 activity.
Read more at Wikipedia.org