Molecular structure of naltrexone
Find information on thousands of medical conditions and prescription drugs.

Naltrexone

Naltrexone is an opioid receptor antagonist used primarily in the management of alcohol dependence and opioid dependence. It is marketed as its hydrochloride salt, naltrexone hydrochloride, under the trade name Revia. more...

Home
Diseases
Medicines
A
B
C
D
E
F
G
H
I
J
K
L
M
N
Nabilone
Nadolol
Nafarelin
Nafcillin
Nalbuphine
Nalidixic acid
Nallpen
Naloxone
Naltrexone
Nandrolone
Naphazoline
Naprelan
Naprosyn
Naproxen
Naratriptan
Narcan
Nardil
Naropin
Nasacort
Nasalcrom
Nascobal
Natamycin
Navane
Navelbine
Nebcin
Nebracetam
Nefazodone
Nefiracetam
Nelfinavir
Nembutal
Neoarsphenamine
Neomycin
Neoral
Neosporin
Neulasta
Neupogen
Neurontin
Nevirapine
Nexium
Nialamide
Niaspan
Niclosamide
Nicoderm
Nicorette
Nicotinamide
Nicotine
Nicotinic acid
Nicotrol
Nifedipine
Nifehexal
Nikethamide
Nilstat
Nilutamide
Nimesulide
Nimodipine
Nimotop
Nitrazepam
Nitrofurantoin
Nix
Nizatidine
Nizoral
Nocodazole
Nolvadex
Nomifensine
Norco
Nordazepam
Nordette
Norepinephrine
Norethin
Norfloxacin
Norgestimate
Norgestrel
Norinyl
Noritate
Normodyne
Norplant
Norpramin
Nortriptyline
Norvasc
Norvir
Noscapine
Novafed
Novobiocin
Novocain
Novrad
Nuprin
Nysert
Nystaform
Nystatin
Nystex
Nystop
O
P
Q
R
S
T
U
V
W
X
Y
Z

Chemical Structure

Naltrexone can be described as a substituted oxymorphone – here the tertiary amine methyl-substituent is replaced with methylcyclopropane.

Pharmacology

Naltrexone, and its active metabolite 6-β-naltrexol, are competitive antagonists at μ- and κ-opioid receptors, and to a lesser extent at δ-opioid receptors. This blockade of opioid receptors is the basis behind its action in the management of opioid dependence—it reversibly blocks or attenuates the effects of opioids.

Its use in alcohol (ethanol) dependence has been studied and has been shown to be effective. Its mechanism of action in this indication is not fully understood, but as an opioid-receptor antagonist is likely to be due to the modulation of the dopaminergic mesolimbic pathway which ethanol is believed to activate.

Rapid detoxification

Naltrexone is sometimes used for rapid detoxification ("rapid detox") regimens for opioid dependence. The principle of rapid detoxification is to induce opioid-receptor blockade while the patient is in a state of impaired consciousness so as to attenuate the withdrawal symptoms experienced by the patient. Rapid detoxification under general anaesthesia involves an unconscious patient and requires intubation and external ventilation. Rapid detoxification is also possible under sedation. The rapid detoxification procedure is followed by oral naltrexone daily for up to 12 months for opioid dependence management.

Rapid detoxification has been criticised by some for its questionable efficacy in long-term opioid dependence management. Rapid detoxification has often been misrepresented as a one-off "cure" for opioid dependence, when it is only intended as the initial step in an overall management regimen. Rapid detoxification is effective for short-term opioid detoxification, but is approximately 10 times more expensive than conventional detoxification procedures.

Safety

There has been some controversy regarding the use of opioid-receptor antagonists, such as naltrexone, in the long-term management of opioid dependence due to the effect of these agents in sensitising the opioid receptors. That is, after therapy, the opioid receptors continue to have increased sensitivity for a period during which the patient is at increased risk of opioid overdose. This effect reinforces the necessity of monitoring of therapy and provision of patient support measures by medical practitioners.

Low Dose Naltrexone (LDN)

Low Dose Naltrexone (LDN), where the drug is used in doses approximately one-tenth those used for drug/alcohol rehabilitation purposes, is being used by some as an "off-label" experimental treatment for certain immunologically-related disorders. Evidence of safety and efficacy are currently lacking, with no published data from randomised controlled trials in humans. The use of LDN for such diseases as cancer was discovered and developed by Ian Zagon and championed by Bernard Bihari.

Read more at Wikipedia.org


[List your site here Free!]


Up the Creek with a Paddle : Beat MS and Many Autoimmune Disorders with Low Dose Naltrexone (LDN) $22.60 Alcohol dependence: no magic treatment bullets: add psychosocial therapy.(Clinical Rounds) : An article from: Family Practice News $5.95
Effects of high doses of naltrexone on running and responding for the opportunity to run in rats: a test of the opiate hypothesis. : An article from: The Psychological Record $5.95


Home Contact Resources Exchange Links ebay