Find information on thousands of medical conditions and prescription drugs.

Rh disease

more...

Home
Diseases
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
Gastroesophageal reflux...
Rabies
Radiophobia
Rasmussen's encephalitis
Raynaud's phenomenon
Reactive arthritis
Reactive hypoglycemia
Reflex sympathetic...
Regional enteritis
Reiter's Syndrome
Renal agenesis
Renal artery stenosis
Renal calculi
Renal cell carcinoma
Renal cell carcinoma
Renal cell carcinoma
Renal failure
Renal osteodystrophy
Renal tubular acidosis
Repetitive strain injury
Respiratory acidosis
Restless legs syndrome
Retinitis pigmentosa
Retinoblastoma
Retinoschisis
Retrolental fibroplasia
Retroperitoneal fibrosis
Rett syndrome
Reye's syndrome
Rh disease
Rhabdomyolysis
Rhabdomyosarcoma
Rheumatic fever
Rheumatism
Rheumatoid arthritis
Rickets
Rift Valley fever
Ringworm
Rocky Mountain spotted fever
Romano-Ward syndrome
Roseola infantum
Rubella
Rubeola
Rubinstein-Taybi syndrome
Rumination disorder
S
T
U
V
W
X
Y
Z
Medicines

Rh disease (also Rhesus disease, Haemolytic Disease of the Newborn (HDNB) or Morbus haemolyticus neonatorum or erythroblastosis) is a condition that occurs when a Rh negative mother has given birth to a Rh positive baby and subsequently becomes pregnant with another Rh positive child. About 5% of at-risk pregnancies would result in still births or extremely sick babies. Many who managed to survive would be severely retarded. Once a woman gives birth to a baby with the disease, all subsequent babies would also have it. The connection between the Rh antigen and erythroblastosis was made in 1941 by Dr. Philip Levine. The treatment that came to be developed for the disease was blood transfusion, which was often ineffective or only partially ameliorative because the damage had already been done. Severely retarded children often resulted.

During the first pregnancy and the act of birth a small amount of the baby's blood may enter the mother's body. If the mother is Rh negative, her body produces antibodies (including IgG) against the Rhesus antigens on her baby's erythrocytes, if the baby is Rh positive. During the second pregnancy the IgG is able to pass through the placenta into the fetus, where it leads to agglutination and destruction of erythrocytes. The means to prevent this harmful disease is to vaccinate the mother immediately after the birth of her first child: she is treated with anti-Rh antibodies, so that the fetal erythrocytes are destroyed before her immune system can discover them.

This explanation of the etiology of the disease was first worked in 1960 out by Dr. Ronald Finn, a Liverpool, England native, who applied a microscopic technique for detecting fetal cells in the mother's blood. It lead him to propose that the disease might be prevented by injecting the at-risk mother with an antibody against fetal red blood cells. He proposed this for the first time to the public on February 18, 1960. A few months later, he proposed at a meeting of the British Genetical Society, that the antibody be anti-Rh. Nearly simultaneously with him, a group of researchers from New York City Columbia-Presbyterian Medical Center, John Gorman, Vince Freda, and Bill Pollack came to the same realization, and set out to prove it by injecting a group of male prisoners at Sing Sing Correctional Facility with anti-body supplied by Ortho Pharmaceutical Corporation. Dr. Gorman's daughter-in-law was the first at risk woman to receive a prophylactic injection on January 31, 1964. Clinical trials by the two rival groups, and others quickly confirmed their hypothesis, and the vaccine was finally approved in England and the United states in 1968. Within a year or so, it had been injected with great success into more than 500,000 women. Time magazine picked it as one of the top ten medical achievements of the 1960's. By 1973, it was estimated that in the US alone, over 50,000 baby's lives had been saved.

Read more at Wikipedia.org


[List your site here Free!]


Vitamins for chronic disease prevention in adults: clinical applications - Abstract
From Alternative Medicine Review, 8/1/02 by RH Fletcher

Fletcher RH, Fairfield KM. JAMA 2002;287:3127-3129.

Vitamin deficiency syndromes such as scurvy and beriberi are uncommon in Western societies. However, suboptimal intake of some vitamins, above levels causing classic vitamin deficiency, is a risk factor for chronic diseases and common in the general population, especially the elderly. Suboptimal folic acid levels, along with suboptimal levels of vitamins B(6) and B(12), are a risk factor for cardiovascular disease, neural tube defects, and colon and breast cancer; low levels of vitamin D contribute to osteopenia and fractures; and low levels of the antioxidant vitamins (vitamins A, E, and C) may increase risk for several chronic diseases. Most people do not consume an optimal amount of all vitamins by diet alone. Pending strong evidence of effectiveness from randomized trials, it appears prudent for all adults to take vitamin supplements. The evidence base for tailoring the contents of multivitamins to specific characteristics of patients such as age, sex, and physical activity and for testing vitamin levels to guide specific supplementation practices is limited. Physicians should make specific efforts to learn about their patients' use of vitamins to ensure that they are taking vitamins they should, such as folate supplementation for women in the childbearing years, and avoiding dangerous practices such as high doses of vitamin A during pregnancy or massive doses of fat-soluble vitamins at any age.

COPYRIGHT 2002 Thorne Research Inc.
COPYRIGHT 2002 Gale Group

Return to Rh disease
Home Contact Resources Exchange Links ebay