Find information on thousands of medical conditions and prescription drugs.

X-linked ichthyosis

X-linked ichthyosis is an inborn error of metabolism characterized by a deficiency in microsomal sulfatase. It is also referred to as placental sulfatase deficiency. more...

Home
Diseases
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
X-linked adrenal...
X-linked ichthyosis
X-linked severe combined...
Xanthinuria
Xanthophobia
Xenophobia
Xeroderma pigmentosum
XX male syndrome
XY Female
Xylophobia
Y
Z
Medicines

The genetic locus for the steroid sulfatase gene has been mapped to the distal short arm of the x chromosome (Xp22.32). Affected individuals, usually male, develop ichthyosis in the form of hyperkeratosis after birth, sometimes associated with pyloric stenosis, cryptorchism, or cornual opacities.

Prenatally, the condition affects placental estrogen production, as precursor steroids from the male fetus are not fully utilized due to difficulty in removing their sulfate group. Estriol levels during pregnancy are low. Pregnancies may be complicated by an inability to go into spontaneous labor. Typically children are delivered by cesarean section.

Read more at Wikipedia.org


[List your site here Free!]


Stratum corneum protein dynamics as evaluated by a spin-label maleimide derivative: Effect of urea
From Biophysical Journal, 12/1/01 by Alonso, Antonio

ABSTRACT The stratum corneum (SC) protein dynamics in the sulfhydryl group regions was studied by electron paramagnetic resonance (EPR) spectroscopy of a covalently attached maleimide derivative spin label. A two-state model for the nitroxide described the coexistence of two spectral components in the EPR spectra. The so-called strongly immobilized component arises from a spin-label fraction with the nitroxide moiety hydrogen-bonded to protein (rigid structure) and the weakly immobilized component is provided by the spin labels with higher mobility (~10 times greater) exposed to the aqueous environment. The relative populations between these two states are in thermodynamic equilibrium. The apparent energetic gain for the nitroxide to form a hydrogen bond with the backbone rather than to be dissolved in the local environment was ~10 kcal/mol in the temperature range of 2-30 deg C and ~6 kcal/mol in the range of 30-70'C. Urea treatment caused a drastic increase in the segmental motion of the polypeptide chains that was completely reversible by its removal. Our analyses also indicated that the urea induced unfolding of the SC proteins opening the thiol group cavities. This work can also be useful to improve the spectral analysis of site-directed spin-labeling, especially for a more quantitative description of the nitroxide side chain mobility.

REFERENCES

Abernethy, J. L., R. L. Hill, and L. A. Goldsmith. 1977. Epsilon-(gammaglutamyl)lysine cross-links in human stratum corneum. J. Biol. Chem. 252:1837-1839.

Alonso, A., N. C. Meirelles, and M. Tabak. 1995. Effect of hydration upon the fluidity of intercellular membranes of stratum corneum: an EPR study. Biochim. Biophys. Acta. 1237:6-15.

Alonso, A., N. C. Meirelles, and M. Tabak. 2000a. Lipid chain dynamics in stratum corneum studied by spin label electron paramagnetic resonance. Chem. Phys. Lipids. 104:101-111.

Alonso, A., N. C. Meirelles, V, E. Yushmanov, and M. Tabak. 1996. Water increases the fluidity of intercellular membranes of stratum corneum: correlation with water permeability, elastic, and electrical properties. J. Invest. DermatoL 106:1058-1063.

Alonso, A., J. G. Santos, and M. Tabak. 20006. Stratum corneum protein mobility as evaluated by a spin label maleimide derivative. Biochim. Biophys. Acta. 1478:89-101.

Barnes, J. P., Z. Liang, H. S. Mchaourab, J. H. Freed, and W. L. Hubbell. 1999. A multifrequency electron spin resonance study of T4 lysozyme dynamics. Biophys. J. 76:3298-3306.

Baskakov, L, A. Wang, and D. W. Bolen. 1998. Trimethylamine-N-oxide counteracts urea effects on rabbit muscle lactate dehydrogenase function: a test of the counteraction hypothesis. Biophys. J. 74:2666-2673.

Behne, M., Y. Uchida, T. Seki, P. O. Montellano, P. M. Elias, and W. M. Holleran. 2000. Omega-hydroxyceramides are required for corneocyte lipid envelope (CLE) formation and normal epidermal permeability barrier function. J. Invest. Dermatol. 114:185-192.

Blank, I. H., J. Moloney, A. G. Emslie, I. Simon, and C. Apt. 1984. The diffusion of water across the stratum corneum as a function of its water content. J. Invest. Dermatol. 82:188-194.

Breathnach, A. S., T. Goodman, C. Stolinski, and M. Gross. 1973. Freeze fracture replication of cells of stratum corneum of human epidermis. J. Anat. 114:65-81.

Budil, D. E., S. Lee, S. Saxena, and J. H. Freed. 1996. Nonlinear-leastsquares analysis of slow-motional EPR spectra in one and two dimensions using a modified Levenberg-Marquardt algorithm. J. Magn. Reson. A. 120:155-189.

Delmelle, M. N., and N. Virmaux. 1977. Location of two sulfhydryl groups in the rhodopsin molecule by use of the spin label technique. Biochim. Biophys. Acta. 464:370-377.

Downing, D. T. 1992. Lipid and protein structures in the permeability barrier of mammalian epidermis. J. Lipid Res. 33:301-313.

Eichner, R., M. Kahn, R. J. Capetola, G. J. Gendimenico, and J. A. Mezick. 1992. Effects of topical retinoids on cytoskeletal proteins: implications for retinoid effects on epidermal differentiation. J. Invest. Dermatol. 98:154-161.

El-Shime, A. F., and H. M. Princen. 1978. Diffusion characteristics of water vapor in some keratins. Colloid Polymers Sci. 256:209-217.

Esmann, M., H. 0. Hankovszky, K. Hideg, and D. Marsh. 1989. A novel spin-label for study of membrane protein rotational diffusion using saturation transfer electron spin resonance. Application to selectively labeled class I and class II -SH groups of the shark rectal gland Na+/ K+-ATPase. Biochim. Biophys, Acta. 978:209-215.

Esmann, M., K. Hideg, and D. Marsh. 1992. Conventional and saturation transfer EPR spectroscopy of Na+/K+-ATPase modified with different maleimide-nitroxide derivatives. Biochim. Biophys. Acta. 1159:51-59.

Esmann, M., L. I. HorvAth, and D. Marsh. 1987. Saturation-transfer electron spin resonance studies on the mobility of spin-labeled sodium and potassium ion activated adenosinetriphosphatase in membranes from Squalus acanthias. Biochemistry. 26:8675-8683.

Goates, C. Y., and K. Knutson. 1993. Enhanced permeation and stratum comeum structural alterations in the presence of dithiothreitol. Biochim. Biophys. Acta. 1153:289-298.

Goldsmith, L. A., H. P. Baden, S. I. Roth, R. Colman, L. Lee, and B. Fleming. 1974. Vertebral epidermal transamidases. Biochim. Biophys. Acta. 351:113-125.

Gray, G. M., R. J. White, and H. J. Yardley. 1982. Lipid composition of the superficial stratum corneum cells of the epidermis. Br. J. DermatoL 106:59-63.

Griffith, 0. H., and P. C. Jost. 1976. Lipid spin labels in biological membranes. In Spin Labeling. Theory and Applications. L. J. Berliner, editor. Academic Press, New York. 453-523.

Han, S. K., Y. H. Jun, Y. J. Rho, S. C. Hong, and Y. M. Kim. 1991. Percutaneous absorption-enhancing activity of urea derivatives. Arch. Pharm. Res. 14:112-118.

Hold, D. 1990. Cornified cell envelope. Dermatologica. 180:201-221. Houstek, J., E. Bertoli, I. Stipani, S. Pavelka, F. M. Megli, and F. Palmieri. 1993. Characterization of sulfhydryl groups of the mitochondrial phosphate translocator by a maleimide spin label. FEBS Lett. 154:185-190.

Lai, C. S., N. M. Tooney, and E. G. Ankel. 1984. Spin label studies of sulfhydryl environment in plasma fibronectin. FEES Lett. 173:283-286. Liang, Z., J. H. Freed, R. S. Keyes, and A. M. Bobst. 2000. An electron

spin resonance study of DNA dynamics using the slowly relaxing local structure model. J. Phys. Chem. B. 104:5372-5381.

Liu, Z. J., and J. M. Zhou. 1995. Spin-labeling probe on conformational change at the active sites of creatine kinase during denaturation by un hydrochloride. Rinrhim Rinnhx Acta 1?51-61-AR

Mashino, T., and I. Fridovich. 1987. Effects of urea and trimethylamineN-oxide on enzyme activity and stability. Arch. Biochem. Biophys. 258:356-360.

Matoltsy, A. G., and M. N. Matoltsy. 1970. The chemical nature of keratohyalin granules of the epidermis. J. Cell Biol. 47:593-603. Mchaourab, H. S., T. Kalai, K. Hideg, and W. L. Hubbell. 1999. Motion of

spin-labeled side chains in T4 lysozyme: effect of side chain structure. Biochemistry 38:2947-2955.

Mchaourab, H. S., M. A. Lietzow, K. Hideg, and W. L. Hubbell. 1996. Motion of spin-labeled side chains in T4 lysozyme: correlation with protein structure and dynamics. Biochemistry. 35:7692-7704.

Nemes, Z., L. N. Marekov, L. F6siis, and P. M. Steinert. 1999. A novel function for transglutaminase 1: attachment of long-chain omegahydroxyceramides to involucrin by ester bond formation. Proc. Natl. Acad. Sci. U.S.A. 96:8402-8407.

Nishihata, T., J. H. Rytting, A. Kamada, K. Matsumoto, and K. Takahashi. 1990. Combined effect of alcohol and urea on the in vitro transport of indomethacin across rat dorsal skin. J. Pharm. Sci. 79:487-489.

Ohman, H., and A. Vahlquist. 1998. The pH over the stratum corneum differs in x-linked recessive and autosomal dominant ichthyosis: a clue to the molecular origin of the "acid skin mantle"? J. Invest. Dermatol. 111:674-677.

Park, J. K., T. Yoshiike, H. Yaguchi, and H. Ogawa. 1992. Isolation and characterization of a lower molecular weight protein doublet of horny cell outer leaflet: a possible novel epidermal differentiation marker. Br. J. Dermatol 127:372-378.

Rice, R. H., and H. Green. 1977. The cornified envelope of terminally differentiated human epidermal keratinocytes consists of cross-linked protein. Cell. 11:417-422.

Russell, C. J., T. E. Thorgeirsson, and Y. K. Shin. 1999. The membrane affinities of the aliphatic amino acid side chains in an a-helical context are independent of membrane immersion depth. Biochemistry. 38:337-346.

Sankarapandi, S., D. A. Walz, R. S. Zafar, and L. J. Berliner. 1995. Electron spin resonance and fluorescence studies of the conformational environment of the thiol groups of thrombospondin: interactions with thrombin. Biochemistry. 34:10491-10496.

Schneider, D. J., and J. H. Freed. 1989. Calculating slow motional magnetic resonance spectra: a user's guide. In Biological Magnetic Resonance, Vol. 8. L. J. Berliner and J. Reuben, editors. Plenum Press, New York. 1-76.

Silva, J. L., and G. Weber. 1993. Pressure stability of proteins. Annu. Rev. Phys. Chem. 44:89-113.

Steinert, P. M., and L. N. Marekov. 1995. The proteins elafin, filagrin, keratin intermediate filaments, loricrin, and small proline-rich proteins 1 and 2 are isodipeptide cross-linked components of the human epidermal cornified cell envelope. J. Biol. Chem. 270:17702-17711.

Steinert, P. M., and L. N. Marekov. 1999. Initiation of assembly of the cell envelope barrier structure of stratified squamous epithelia. Mol. Biol. Cell. 10:4247-4261.

Steven, A. C., and P. M. Steinert. 1994. Protein composition of cornified cell envelopes of epidermal keratinocytes. J. Cell Sci. 107:693-700. Swartzendruber, D. C., P. W. Wertz, D. J. Kitko, K. C. Madison, and D. T.

Downing. 1989. Molecular models of the intercellular lipid lamellae in mammalian stratum corneum. J. Invest. Dermatol. 92:251-257.

Valenta, C., and S. Wedenig. 1997. Effects of penetration enhancers on the in vitro percutaneous absorption of progesterone. J. Pharm. PharmacoL 49:955-959.

Weber, G., A. T. Da Poian, and J. L. Silva. 1996. Concentration dependence of the subunit association of oligomers and viruses and the modification of the latter by urea binding. Biophys. J. 70:167-173.

Wertz, P. W., and D. T. Downing. 1987. Covalently bound oohydroxyacylsphingosine in the stratum corn. Biochim. Biophys. Acta. 917: 108-111.

Wertz, P. W., D. C. Swartzendruber, D. J. Kitko, K. C. Madison, and D. T. Downing. 1989. The role of the corneocyte lipid envelopes in cohesion of the stratum corneum. J. Invest. Dermatol. 93:169-172.

Yancey, P. H., and G. N. Somero. 1980. Methylamine osmoregulatory solutes of elasmogranch fishes counteract urea inhibition of enzymes. J. Exp. Zool. 212:205-213.

Zhan, H., 0. J. Kyoung, Y. K. Shin, W. L. Hubbell, and R. J. Collier. 1995. Interaction of the isolated transmembrane domain of diphtheria toxin with membranes. Biochemistry. 34:4856-4863.

Antonio Alonso,* Wilmar Pereira dos Santos,* Sergio Jacintho Leonor,* Judes Gongalves dos Santos,* and Marcel Tabak^

*Instituto de Fisica, Universidade Federal de Goias, Goiania 74001-970, Brazil; and tlnstituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos 13560-970, Brazil

Received fro publication 12 January 2001 and in final form 23 August 2001.

Address reprint requests to Dr. Antonio Alonso, Universidade Federal de Goias, Goiania 74001-970, Brazil. Tel 55-62-521-1470; Fax 55-62-521-- 1014: E-mail: alsone@fisufg.br.

(C) 2001 by the Biophysical Society

0006-3495/01/12/3566/11 $2.00

We thank Prof. Dr. Fernando Pelegrini (Instituto de Fisica, Universidade Federal de Goias) for his interest in this work. We thank Professors Richard H. Crepeau, Keith A. Earle, and Mingtao Ge for helping us to install the program NLLS.

This work was supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq; grant process 300908/92-0), Fundaqao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP; processes 97/ 02431-4 and 95/6177-0), and Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES).

Copyright Biophysical Society Dec 2001
Provided by ProQuest Information and Learning Company. All rights Reserved

Return to X-linked ichthyosis
Home Contact Resources Exchange Links ebay