Normal heart anatomy
Find information on thousands of medical conditions and prescription drugs.

Great vessels transposition

Transposition of the great vessels (TGV) is a group of congenital heart defects (CHDs) involving an abnormal spatial arrangement of any of the primary vessels: superior and/or inferior vena cavae (SVC, IVC), pulmonary artery, pulmonary veins, and aorta. more...

Home
Diseases
A
B
C
D
E
F
G
Galactorrhea
Galactosemia
Gardner's syndrome
Gastric Dumping Syndrome
Gastroesophageal reflux
Gaucher Disease
Gaucher's disease
Gelineau disease
Genu varum
Geographic tongue
Gerstmann syndrome
Gestational trophoblastic...
Giant axonal neuropathy
Giant cell arteritis
Giardiasis
Gigantism
Gilbert's syndrome
Gilles de la Tourette's...
Gingivitis
Gitelman syndrome
Glanzmann thrombasthenia
Glioblastoma
Glioblastoma multiforme
Glioma
Glomerulonephritis
Glossodynia
Glossophobia
Glucagonoma
Glucose 6 phosphate...
Glutaryl-CoA...
Glycogen storage disease
Glycogen storage disease...
Glycogen storage disease...
Glycogenosis type IV
Glycosuria
Goiter
Goldenhar syndrome
Goodpasture's syndrome
Graft versus host disease
Granulocytopenia
Graves' disease
Great vessels transposition
Growth hormone deficiency
Guillain-Barré syndrome
Gymnophobia
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Medicines

Description

In a normal heart, oxygen-depleted ("blue") blood is pumped from the right side of the heart, through the pulmonary artery, to the lungs where it is oxygenated. The oxygen-rich ("red") blood then returns to the left heart, via the pulmonary veins, and is pumped through the aorta to the rest of the body, including the heart muscle itself.

Transposed vessels can present a large variety of atriovenous, ventriculoarterial and/or arteriovenous discordance. The effects may range from a change in blood pressure to an interruption in circulation, depending on the nature and degree of the misplacement and which vessels are involved.

Terminology

The term "TGV" is often used as a more specific reference to transposition of the great arteries (TGA); however, TGA only relates to the aorta and the pulmonary artery, whereas TGV is a broader term which can relate to these vessels as well as the SVC, IVC, and pulmonary veins.

In it’s strictest sense, transposition of vessels relates only to defects in which two or more vessels have "swapped" positions; in a broader sense, it may be taken to relate to any defect in which a vessel is in an abnormal position.

Variations and similar defects

Simple and complex TGV

In many cases, TGV is accompanied by other heart defects, the most common type being intracardiac shunts such as atrial septal defect (ASD) including patent foramen ovale (PFO), ventricular septal defect (VSD), and patent ductus arteriosus (PDA). Stenosis, or other defects, of valves and/or vessels may also be present.

When no other heart defects are present it is called 'simple' TGV; when other defects are present it is called 'complex' TGV.

Similar defects

The following defects involve abnormal spatial and/or structural arrangement of the great vessels:

  • Total anomalous pulmonary venous connection (TAPVC)
  • Partial anomalous pulmonary Venous Connection (PAPVC)
  • Coarctation of the aorta
  • Cor triatriatum
  • dextro-Transposition of the great arteries (d-TGA)
  • Double outlet right ventricle (DORV)
  • Hypoplastic left heart syndrome (HLHS)
  • levo-Transposition of the great arteries (l-TGA)
  • Overriding aorta
  • Patent ductus arteriosus (PDA)
  • Pulmonary atresia (PA)
  • Unilateral or bilateral Pulmonary arteriovenous malformation (PAVM)
  • Pulmonary sequestration
  • Scimitar syndrome
  • Sinus venosus atrial septal defect (SVASD)
  • Situs inversus
  • Tetralogy of Fallot (TOF)
  • Truncus arteriosus (TA)
  • Vascular rings

Read more at Wikipedia.org


[List your site here Free!]


Heart surgery for congenital defects
From Gale Encyclopedia of Medicine, 4/6/01 by Lori De Milto

Definition

A variety of surgical procedures that are performed to repair the many types of heart defects that may be present at birth.

Purpose

Heart surgery for congenital defects is performed to repair a defect as much as possible and improve the flow of blood and oxygen to the body. While congenital heart defects vary in their severity, most require surgery. Surgery is recommended for congenital heart defects that result in a lack of oxygen, a poor quality of life, or a patient who does not thrive. Some types of congenital heart defects that don't cause symptoms are treated surgically because they can lead to serious complications.

Precautions

There are many types of surgery for congenital heart defects and many considerations in the decision to operate. The patient's cardiologist or surgeon will discuss these issues on an individual basis.

Description

There are many types of congenital heart defects. Most obstruct the flow of blood in the heart, or the vessels near it, or cause an abnormal flow of blood through the heart. Rarer types include newborns born with one ventricle, one side of the heart that is not completely formed, or the pulmonary artery and the aorta coming out of the same ventricle. Most congenital heart defects require surgery during infancy or childhood. Recommended ages for surgery for the most common congenital heart defects are:

  • Atrial septal defects: during the preschool years
  • Patent ductus arteriosus: between ages one and two
  • Coarctation of the aorta: in infancy, if it's symptomatic, at age four otherwise
  • Tetralogy of Fallot: age varies, depending on the patient's signs and symptoms
  • Transposition of the great arteries: often in the first weeks after birth, but before the patient is 12 months old.

Surgical procedures seek to repair the defect as much as possible and restore circulation to as close to normal as possible. Sometimes, multiple, serial, surgical procedures are necessary. Smaller congenital heart defects can now be repaired in a cardiac catheterization lab instead of an operating room. Catheterization procedures include balloon atrial septostomy and balloon valvuloplasty. Surgical procedures include arterial switch, Damus-Kaye-Stansel procedure, Fontan procedure, Ross procedure, shunt procedure, and venous switch or intra-atrial baffle.

Catheterization procedures

Balloon atrial septostomy and balloon valvuloplasty are cardiac catheterization procedures. Cardiac catheterization procedures can save the lives of critically ill neonates and in some cases eliminate or delay more invasive surgical procedures. It is expected that catheterization procedures will continue to replace more types of surgery for congenital heart defects in the future. A thin tube called a catheter is inserted into an artery or vein in the leg, groin, or arm and threaded into the area of the heart which needs repair. The patient receives a local anesthetic at the insertion site and is awake but sedated during the procedure.

Balloon atrial septostomy

Balloon atrial septostomy is the standard procedure for correcting transposition of the great arteries; it is sometimes used in patients with mitral, pulmonary, or tricupsid atresia (atresia is a defect that causes the blood to carry too little oxygen to the body). Balloon atrial septostomy enlarges the atrial opening. A special balloon-tipped catheter is inserted into the right atrium and inflated to create a large opening in the atrial septum.

Balloon valvuloplasty

Balloon valvuloplasty uses a balloon-tipped catheter to open a narrowed heart valve, improving the flow of blood. It is the procedure of choice in pulmonary stenosis and is sometimes used in aortic stenosis. Balloons made of plastic polymers are placed at the end of the catheter and inflated to relieve the obstruction in the heart valve. Long-terms results are excellent in most cases. The operative death rate is 2-4%.

Surgical procedures

These procedures are performed under general anesthesia. Some require the use of a heart-lung machine, which cools the body to reduce the need for oxygen and takes over for the heart and lungs during the procedure.

Arterial switch

Arterial switch is performed to correct transposition of the great arteries, where the position of the pulmonary artery and the aorta are reversed. The procedure involves connecting the aorta to the left ventricle and the pulmonary artery to the right ventricle.

Damus-Kaye-Stansel procedure

Transposition of the great arteries can also be corrected by the Damus-Kaye-Stansel procedure, in which the pulmonary artery is cut in two and connected to the ascending aorta and right ventricle.

Fontan procedure

For tricuspid atresia and pulmonary atresia, the Fontan procedure connects the right atrium to the pulmonary artery directly or with a conduit, and the atrial defect is closed. Survival is over 90%.

Pulmonary artery banding

Pulmonary artery banding is narrowing the pulmonary artery with a band to reduce blood flow and pressure in the lungs. It is used for ventricular septal defect, atrioventricular canal defect, and tricuspid atresia. Later, the band can be removed and the defect corrected with open heart surgery.

Ross procedure

To correct aortic stenosis, the Ross procedure grafts the pulmonary artery to the aorta.

Shunt procedure

For Tetralogy of Fallot, tricuspid atresia, or pulmonary atresia, the shunt procedure creates a passage between blood vessels, sending blood into parts of the body that need it.

Venous switch

For transposition of the great arteries, venous switch creates a tunnel inside the atria to re-direct oxygen-rich blood to the right ventricle and aorta and venous blood to the left ventricle and pulmonary artery.

Other types of surgery

These surgical procedures are also used to treat common congenital heart defects. A medium to large ventricular or atrial septal defect can be closed by suturing it or covering it with a Dacron patch. For patent ductus arteriosus, surgery consists of dividing the ductus into two and tying off the ends. If performed within the patient's first few years, there is practically no risk associated with this operation. Surgery for coarctation of the aorta involves opening the chest wall, removing the defect, and reconnecting the ends of the aorta. If the defect is too long to be reconnected, a Dacron graft is used to replace the missing piece. In uncomplicated cases, the risk of the operation is 1-2%.

Preparation

Before surgery for congenital heart defects, the patient will receive a complete evaluation, which includes a physical exam, a detailed family history, a chest x ray, an electrocardiogram, an echocardiogram, and usually cardiac catheterization. For six to eight hours before the surgery, the patient cannot eat or drink anything. An electrocardiogram shows the heart's activity and may reveal a lack of oxygen. Electrodes covered with conducting jelly are placed on the patient's chest, arms, and legs and the heart's impulses are traced on paper. An echocardiogram uses sound waves to create an image of the heart's chambers and valves. Gel is applied to a hand-held transducer and then pressed against the patient's chest. Cardiac catheterization is an invasive diagnostic technique used to evaluate the heart in which a long tube is inserted into a blood vessel and guided into the heart. A contrast solution is injected to make the heart visible on x rays.

Aftercare

After heart surgery for congenital defects, the patient goes to an intensive care ward where he or she is connected to a variety of tubes and monitors, including a ventilator. Patients are monitored every 15 minutes until vital signs are stable. Heart sounds, oxygenation, and the electrocardiogram are monitored. Chest tubes will be checked to ensure that they're draining properly and there is no hemorrhage. Pain medications will be administered. Complications such as stroke, lung blood clots, and reduced blood flow to the kidneys will be watched for. After the ventilator and breathing tube are removed, chest physical therapy and exercises to improve circulation will be started.

Risks

Complications from heart surgery for congenital defects can be severe. They include shock, congestive heart failure, lack of oxygen or too much carbon dioxide in the blood, irregular heartbeat, stroke, infection, kidney damage, lung blood clot, low blood pressure, hemorrhage, cardiac arrest, and death.

Key Terms

Atresia
A congenital defect in which the blood pumped through the body has too little oxygen. In tricuspid atresia, the baby lacks a triscupid valve. In pulmonary atresia, a pulmonary valve is missing.
Coarctation of the aorta
A congenital defect in which severe narrowing or constriction of the aorta obstructs the flow of blood.
Congenital heart defects
Congenital means conditions which are present at birth. Congenital heart disease includes a variety of defects that babies are born with.
Patent ductus arteriosus
A congenital defect in which the temporary blood vessel connecting the left pulmonary artery to the aorta in the fetus doesn't close in the newborn.
Septal defects
These are holes in the septum, the muscle wall separating the right and left sides of the heart. Atrial septal defects are openings between the two upper heart chambers and ventricular septal defects are openings between the two lower heart chambers.

Stenosis
A narrowing of the heart's valves. This congenital defect can occur in the pulmonary (lung) or aortic (the main heart artery) valve.
Tetralogy of Fallot
A cyanotic defect in which the blood pumped through the body has too little oxygen. Tetralogy of Fallot includes four defects: a large hole between the ventricles, narrowing at or beneath the pulmonary valve, an overly muscular right ventricle, and an aorta over the large hole.
Transposition of the great arteries
A cyanotic defect in which the blood pumped through the body has too little oxygen. The pulmonary artery and the aorta are reversed.

Further Reading

For Your Information

    Books

  • "Congenital Heart Disease." In Current Medical Diagnosis & Treatment, 36th ed., edited by Lawrence Tierney, et al. Stamford, CT: Appleton & Lange, 1997.
  • DeBakey, Michael E. and Antonio M. Gotto, Jr. "Congenital Abnormalities of the Heart." In The New Living Heart. Holbrook, MA: Adams Media Corporation, 1997.
  • Park, Myung K. Pediatric Cardiology for Practitioners, 3rd ed. St. Louis, MO: Mosby, 1996.
  • Texas Heart Institute. "Congenital Heart Disease." In Texas Heart Institute Heart Owners Handbook. New York: John Wiley & Sons, 1996.

    Periodicals

  • Hicks, George L. "Cardiac Surgery." Journal of the American College of Surgeons 186, no. 2(February 1998): 129-132.
  • Rao, P. S. "Interventional Pediatric Cardiology: State of the Art and Future Directions." Pediatric Cardiology 19 (1998): 107-124.

    Organizations

  • American Heart Association. National Center. 7272 Greenville Avenue, Dallas, TX 75231-4596. (214) 373-6300. http://www.medsearch.com/pf/profiles/amerh/.
  • Congenital Heart Anomalies Support, Education & Resources, Inc. 2112 North Wilkins Road, Swanton, OH 43558. (419) 825-5575. http://www.csun.edu/~hfmthoo6/chaser/.
  • Congenital Heart Disease Information and Resources. 1561 Clark Drive, Yardley, PA 19067. http://www.tchin.org/.
  • Texas Heart Institute Heart Information Service. P.O. Box 20345, Houston, TX 77225-0345. 1-800-292-2221. http://www.tmc.edu/thi/his.html.

Gale Encyclopedia of Medicine. Gale Research, 1999.

Return to Great vessels transposition
Home Contact Resources Exchange Links ebay