An uncollapsed syrinx (before surgery).
Find information on thousands of medical conditions and prescription drugs.

Syringomyelia

Image:Collapsed Syringomyelia.JPGSyringomyelia (sear-IN-go-my-EEL-ya) is a disorder in which a cyst or tubular cavity forms within the spinal cord. This cyst, called a syrinx, expands and elongates over time, destroying the center of the spinal cord. Since the spinal cord connects the brain to nerves in the extremities, this damage results in pain, weakness, and stiffness in the back, shoulders, arms, or legs. Other symptoms may include headaches and a loss of the ability to feel extremes of hot or cold, especially in the hands. more...

Home
Diseases
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
Sabinas brittle hair...
Saccharopinuria
Sacral agenesis
Saethre-Chotzen syndrome
Salla disease
Salmonellosis
Sandhoff disease
Sanfilippo syndrome
Sarcoidosis
Say Meyer syndrome
Scabies
Scabiophobia
Scarlet fever
Schamberg disease...
Schistosomiasis
Schizencephaly
Schizophrenia
Schmitt Gillenwater Kelly...
Sciatica
Scimitar syndrome
Sciophobia
Scleroderma
Scrapie
Scurvy
Selachophobia
Selective mutism
Seminoma
Sensorineural hearing loss
Seplophobia
Sepsis
Septo-optic dysplasia
Serum sickness
Severe acute respiratory...
Severe combined...
Sezary syndrome
Sheehan syndrome
Shigellosis
Shingles
Shock
Short bowel syndrome
Short QT syndrome
Shprintzen syndrome
Shulman-Upshaw syndrome
Shwachman syndrome
Shwachman-Diamond syndrome
Shy-Drager syndrome
Sialidosis
Sickle-cell disease
Sickle-cell disease
Sickle-cell disease
Siderosis
Silicosis
Silver-Russell dwarfism
Sipple syndrome
Sirenomelia
Sjogren's syndrome
Sly syndrome
Smallpox
Smith-Magenis Syndrome
Sociophobia
Soft tissue sarcoma
Somniphobia
Sotos syndrome
Spasmodic dysphonia
Spasmodic torticollis
Spherocytosis
Sphingolipidosis
Spinal cord injury
Spinal muscular atrophy
Spinal shock
Spinal stenosis
Spinocerebellar ataxia
Splenic-flexure syndrome
Splenomegaly
Spondylitis
Spondyloepiphyseal...
Spondylometaphyseal...
Sporotrichosis
Squamous cell carcinoma
St. Anthony's fire
Stein-Leventhal syndrome
Stevens-Johnson syndrome
Stickler syndrome
Stiff man syndrome
Still's disease
Stomach cancer
Stomatitis
Strabismus
Strep throat
Strongyloidiasis
Strumpell-lorrain disease
Sturge-Weber syndrome
Subacute sclerosing...
Sudden infant death syndrome
Sugarman syndrome
Sweet syndrome
Swimmer's ear
Swyer syndrome
Sydenham's chorea
Syncope
Syndactyly
Syndrome X
Synovial osteochondromatosis
Synovial sarcoma
Synovitis
Syphilis
Syringomas
Syringomyelia
Systemic carnitine...
Systemic lupus erythematosus
Systemic mastocytosis
Systemic sclerosis
T
U
V
W
X
Y
Z
Medicines

Each patient experiences a different combination of symptoms.

Other, more common disorders share the early symptoms of syringomyelia. In the past, this has made diagnosis difficult. The advent of one outpatient test, however, called magnetic resonance imaging or MRI, has significantly increased the number of syringomyelia cases diagnosed in the beginning stages of the disorder.

About 21,000 American men and women have syringomyelia, with symptoms usually beginning in young adulthood. Signs of the disorder tend to develop slowly, although sudden onset may occur with coughing, straining, or myelopathy. If not treated surgically, syringomyelia often leads to progressive weakness in the arms and legs, loss of hand sensation, and chronic, severe pain.

The Cause

A watery, protective substance known as cerebrospinal fluid normally flows around the spinal cord and brain, transporting nutrients and waste products. It also serves to cushion the brain.

A number of medical conditions can cause an obstruction in the normal flow of cerebrospinal fluid, redirecting it into the spinal cord itself. For reasons that are only now becoming clear, this results in syrinx formation. Cerebrospinal fluid fills the syrinx. Pressure differences along the spine cause the fluid to move within the cyst. Physicians believe that it is this continual movement of fluid that results in cyst growth and further damage to the spinal cord.

Different Origins

Generally, there are two forms of syringomyelia.

The first major form consists of most cases, whereby the disorder is related to an abnormality of the brain called an Arnold-Chiari malformation, named after the physician who first characterized it. This anatomic abnormality causes the lower part of the cerebellum to protrude from its normal location in the back of the head into the cervical or neck portion of the spinal canal. A syrinx may then develop in the cervical region of the spinal cord. Because of the relationship that was once thought to exist between the brain and spinal cord in this type of syringomyelia, physicians sometimes refer to it as communicating syringomyelia. Here, symptoms usually begin between the ages of 25 and 40 and may worsen with straining or any activity that causes cerebrospinal fluid pressure to fluctuate suddenly. Some patients, however, may have long periods of stability. Some patients with this form of the disorder also have hydrocephalus, in which cerebrospinal fluid accumulates in the skull, or a condition called arachnoiditis, in which a covering of the spinal cord--the arachnoid membrane--is inflamed.

The second major form of syringomyelia occurs as a complication of trauma, meningitis, hemorrhage, a tumor, or arachnoiditis. Here, the syrinx or cyst develops in a segment of the spinal cord damaged by one of these conditions. The syrinx then starts to expand. This is sometimes referred to as noncommunicating syringomyelia. Symptoms may appear months or even years after the initial injury, starting with pain, weakness, and sensory impairment originating at the site of trauma.

Read more at Wikipedia.org


[List your site here Free!]


Investigations of cerebrospinal fluid dynamics in a sheep model of post-traumatic syringomyelia
From Journal of Bone and Joint Surgery, 1/1/03 by Abou-Hamden, A

INTRODUCTION: Modern imaging techniques have demonstrated that up to 28% of patients with spinal cord injury develop syringomyelia. Cyst formation and enlargement are thought to be related to abnormalities of cerebrospinal fluid hydrodynamics, however the exact mechanism and route of entry into the spinal cord remain incompletely understood. Previous work in rats has demonstrated that experimental post-traumatic syrinxes occur more reliably and are larger when the excitotoxic injury is combined with arachnoiditis produced by subarachnoid kaolin injection. A sheep model of post-traumatic syringomyelia (P.T.S.) has been characterised and studies of cerebrospinal fluid dynamics are currently being undertaken.The aim of this study was to assess the effect of focal subarachnoid space blockage on spinal fluid pressures and flow.

METHODS: Arachnoiditis was induced in five sheep by injection of 1.5 mls of kaolin in the subarachnoid space (SAS) of upper thoracic spinal cord. The animals were left for 6-8 weeks before C.S.F. studies were undertaken. In another five sheep, a ligature was passed around the spinal cord to simulate an acute blockage of the subarachnoid space. Fluid-coupled monitors were used to measure blood pressure, central venous pressure and subarachnoid pressure (1 cm rostral and 1 cm caudal to the arachnoiditis or ligature). Fiberoptic monitors were used to measure intracranial pressure. In the ligature group, subarachnoid pressures were also measured prior to tying the ligature to obliterate the SAS and served as baseline control pressures. The effects of Valsalva and Queckenstedt manoeuvres on SAS pressures were examined in both groups.

CSF flow was studied at 0 and 10 minutes after injection of the CSF tracer horseradish peroxidase (HRP). Vibratome sections of the spinal cord were processed using tetramethylbenzidine and sections examined under light microscopy.

RESULTS: The mean SAS pressure rostral to the arachnoiditis was found to be greater than the mean caudal SAS pressure by 1.7 mmHg. In the ligature group, the difference was 0.9 mmHg, being higher in the caudal SAS. Queckenstedt manoeuvre exaggerated this difference to 3 mmHg in the Kaolin group and 4 mmHg in the ligature group. The effect of Valsalva was much less marked in both groups.

Perivascular spaces were enlarged in most cases of arachnoiditis and HRP was seen to stain these spaces and the central canal within 10 minutes.

DISCUSSION: Post-traumatic syrinxes are usually juxtaposed to the injury site with 80% occurring rostral, 4% caudal and 15% in both directions. The finding of a higher subarachnoid pressure rostral to the injury site may help explain this phenomenon. We hypothesise that a reduction of compliance in subarachnoid space increases the pulse pressure and hence increases perivascular flow of C.S.F. contributing to the formation and enlargement of PTS. We are currently investigating this hypothesis by measuring subarachnoid space compliance directly in the sheep model of arachnoiditis described above.

A. Abou-Hamden, N.R. Jones, M.A. Stoodley, A. Wells, M.A. Smith, C. Brown

Royal Adelaide Hospital University Department of Surgery (Neurosurgery), Adelaide, Australia

Copyright British Editorial Society of Bone & Joint Surgery 2003
Provided by ProQuest Information and Learning Company. All rights Reserved

Return to Syringomyelia
Home Contact Resources Exchange Links ebay