Find information on thousands of medical conditions and prescription drugs.

Campylobacter

Campylobacter is a genus of Gram-negative bacteria. more...

Home
Diseases
A
B
C
Angioedema
C syndrome
Cacophobia
Café au lait spot
Calcinosis cutis
Calculi
Campylobacter
Canavan leukodystrophy
Cancer
Candidiasis
Canga's bead symptom
Canine distemper
Carcinoid syndrome
Carcinoma, squamous cell
Carcinophobia
Cardiac arrest
Cardiofaciocutaneous...
Cardiomyopathy
Cardiophobia
Cardiospasm
Carnitine transporter...
Carnitine-acylcarnitine...
Caroli disease
Carotenemia
Carpal tunnel syndrome
Carpenter syndrome
Cartilage-hair hypoplasia
Castleman's disease
Cat-scratch disease
CATCH 22 syndrome
Causalgia
Cayler syndrome
CCHS
CDG syndrome
CDG syndrome type 1A
Celiac sprue
Cenani Lenz syndactylism
Ceramidase deficiency
Cerebellar ataxia
Cerebellar hypoplasia
Cerebral amyloid angiopathy
Cerebral aneurysm
Cerebral cavernous...
Cerebral gigantism
Cerebral palsy
Cerebral thrombosis
Ceroid lipofuscinois,...
Cervical cancer
Chagas disease
Chalazion
Chancroid
Charcot disease
Charcot-Marie-Tooth disease
CHARGE Association
Chediak-Higashi syndrome
Chemodectoma
Cherubism
Chickenpox
Chikungunya
Childhood disintegrative...
Chionophobia
Chlamydia
Chlamydia trachomatis
Cholangiocarcinoma
Cholecystitis
Cholelithiasis
Cholera
Cholestasis
Cholesterol pneumonia
Chondrocalcinosis
Chondrodystrophy
Chondromalacia
Chondrosarcoma
Chorea (disease)
Chorea acanthocytosis
Choriocarcinoma
Chorioretinitis
Choroid plexus cyst
Christmas disease
Chromhidrosis
Chromophobia
Chromosome 15q, partial...
Chromosome 15q, trisomy
Chromosome 22,...
Chronic fatigue immune...
Chronic fatigue syndrome
Chronic granulomatous...
Chronic lymphocytic leukemia
Chronic myelogenous leukemia
Chronic obstructive...
Chronic renal failure
Churg-Strauss syndrome
Ciguatera fish poisoning
Cinchonism
Citrullinemia
Cleft lip
Cleft palate
Climacophobia
Clinophobia
Cloacal exstrophy
Clubfoot
Cluster headache
Coccidioidomycosis
Cockayne's syndrome
Coffin-Lowry syndrome
Colitis
Color blindness
Colorado tick fever
Combined hyperlipidemia,...
Common cold
Common variable...
Compartment syndrome
Conductive hearing loss
Condyloma
Condyloma acuminatum
Cone dystrophy
Congenital adrenal...
Congenital afibrinogenemia
Congenital diaphragmatic...
Congenital erythropoietic...
Congenital facial diplegia
Congenital hypothyroidism
Congenital ichthyosis
Congenital syphilis
Congenital toxoplasmosis
Congestive heart disease
Conjunctivitis
Conn's syndrome
Constitutional growth delay
Conversion disorder
Coprophobia
Coproporhyria
Cor pulmonale
Cor triatriatum
Cornelia de Lange syndrome
Coronary heart disease
Cortical dysplasia
Corticobasal degeneration
Costello syndrome
Costochondritis
Cowpox
Craniodiaphyseal dysplasia
Craniofacial dysostosis
Craniostenosis
Craniosynostosis
CREST syndrome
Cretinism
Creutzfeldt-Jakob disease
Cri du chat
Cri du chat
Crohn's disease
Croup
Crouzon syndrome
Crouzonodermoskeletal...
Crow-Fukase syndrome
Cryoglobulinemia
Cryophobia
Cryptococcosis
Crystallophobia
Cushing's syndrome
Cutaneous larva migrans
Cutis verticis gyrata
Cyclic neutropenia
Cyclic vomiting syndrome
Cystic fibrosis
Cystinosis
Cystinuria
Cytomegalovirus
Dilated cardiomyopathy
Hypertrophic cardiomyopathy
Restrictive cardiomyopathy
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Medicines

Infection

Infection with a Campylobacter species is one of the most common causes of human bacterial gastroenteritis. In the United States, 15 out of every 100,000 people are diagnosed with campylobacteriosis every year, and with many cases going unreported, up to 0.5% of the general population may unknowingly harbor Campylobacter in their gut annually. Diarrhea, cramps, abdominal pain, and fever develop within 2–5 days of picking up a pathogenic Campylobacter species, and in most people, the illness lasts for 7–10 days. But the infection can sometimes be fatal, and some individuals develop Guillain-Barré syndrome, in which the nerves that join the spinal cord and brain to the rest of the body are damaged, sometimes permanently.

Campylobacteriosis is usually caused by C. jejuni, a spiral-shaped bacterium normally found in cattle, swine, and birds, where it causes no problems. But the illness can also be caused by C. coli (also found in cattle, swine, and birds), C. upsaliensis (found in cats and dogs), and C. lari (present in seabirds in particular). Disease-causing bacteria generally get into people via contaminated food, often undercooked or poorly handled poultry, although contact with contaminated water, livestock, or household pets can also cause disease.

Treatment

Infections of poultry was treated by enrofloxacin and sarafloxacin, many times by mass administration to flocks for single instances of infection. According to the FDA study banning this practice, this generally did not eliminate all campy bacteria, and promoted populations of bacteria resitant to fluoroquinolone drugs (like the human drug ciprofloxacin).

Species

  • Campylobacter coli
  • Campylobacter jejuni
  • Campylobacter lari
  • Campylobacter insulaenigrae
  • Campylobacter upsaliensis
  • Campylobacter helveticus
  • Campylobacter fetus
  • Campylobacter hyointestinalis
  • Campylobacter lanienae
  • Campylobacter mucosalis
  • Campylobacter curvus
  • Campylobacter concisus
  • Campylobacter rectus
  • Campylobacter showae
  • Campylobacter gracilis
  • Campylobacter hominis
  • Campylobacter sputorum

Other resources

Read more at Wikipedia.org


[List your site here Free!]


Campylobacter: unmasking the secret genes of a food-poisoning culprit
From Agricultural Research, 10/1/04 by Marcia Wood

Microarrays, or gene chips, enable scientists to get a quick look at thousands of genes in a single experiment. Here, technician Sharon Horn monitors robotic equipment as it imprints Campylobacter microarrays on glass slides. Photo by Peggy Greb. (K11465-1)

The "juice" that always seems to leak out of those packages of fresh chicken you bring home from the supermarket can make a big mess on your kitchen counter. But more importantly, the juice can pose a hazard to your health. Nasty microbes called Campylobacter jejuni can live in that liquid and on the skin of fresh, uncooked poultry.

Thoroughly cooking chicken--by grilling, frying, roasting, or baking--kills this food-poisoning microbe. But if you accidentally splash some of the raw juice on food that you'd planned to eat uncooked, such as leafy greens for a fresh salad, you'd be wise to throw them out. Here's why: If the microbe takes hold on those greens, as it is very adept at doing, you might be in for a case of campylobacteriosis food poisoning that you won't soon forget.

Campylobacter is thought to be the leading cause of bacterial food poisoning in humans and is likely the perpetrator of more than 400 million cases of diarrhea every year. Though being careful when you handle raw poultry should help keep you safe, ARS researchers want to do more to zap this microbial menace before it reaches your home.

At Albany, California, scientists in the ARS Produce Safety and Microbiology Research Unit are making key advances in the international effort to clobber Campylobacter. The California team, based at the Western Regional Research Center, is focusing on Campylobacter's genes.

Why the interest in the microbe's genetic makeup? Because investigating genes may lead to discovery of faster, more reliable ways to detect the microbe in samples from humans and other animals, food, and water.

In addition, gene-based research opens the door to simpler, less-expensive tactics for distinguishing look-alike species and strains of Campylobacter and its close relatives, such as the Arcobacters. This will enable experts to quickly finger culprit microbes in food poisoning outbreaks.

Finally, the studies may lead to innovative, environmentally friendly techniques to circumvent the genes that make C. jejuni strains so successful in causing human gastrointestinal upset and in some cases paralysis or even death.

Working with the Institute for Genomic Research, Rockville, Maryland, the Albany scientists have decoded the makeup, or sequence, of all the genes and other genetic material in a specially selected strain of C. jejuni.

This research represents the first time that a C. jejuni strain from a farm animal--this case, a market chicken--has been sequenced. That's important, notes research leader Robert E. Mandrell, because chicken is the leading source of the bacterium in food. Earlier C. jejuni genome sequencing, performed elsewhere, was based on a specimen from a gastroenteritis patient and was lacking key features, such as the ability to colonize chickens, Mandrell says.

The next step: Zero in on specific genes. "We're particularly interested in the genes that make Campylobacter so viable and virulent," says ARS molecular biologist William G. Miller. They're targeting, for instance, genes that carry the code for making oligosaccharides. These compounds likely enable the microbe to stick like glue to chicken skin in the poultry processing plant even though the birds are bathed and rinsed with chlorinated water. The oligosaccharides might be important in invading and colonizing the human body, as well, Miller notes.

With this genome sequence information in hand, the scientists are developing microarrays, or gene chips, that make possible a quick look at thousands of genes in a single experiment. For these analyses, robotic equipment precisely places pieces of the pathogen's DNA in an array of infinitesimally small droplets on glass microscope slides.

"We build and use these microarrays to compare and contrast DNA of various Campylobacter samples," explains microbiologist Craig T. Parker. "We're also using microarrays to get a snapshot of genes in action so that we can see when genes are turned on or off." For example, Parker is pinpointing the genes that are active in helping Campylobacter overcome our bodies' protective actions. By tracking the action of the microbes' genes, Parker and co-investigators may be able to determine a way to derail them.

Though C. jejuni has grabbed center stage because of its known virulence, its relatives are also of interest. The Albany studies of C. coli, C. lari, and C. upsaliensis, for example, are attracting the attention of member nations in a three-continent collaboration called "Campycheck," formed to evaluate the importance of these lesser-known or newly emerging species. The Albany scientists and colleagues from the ARS Richard B. Russell Agricultural Research Center, Athens, Georgia, are advisors to Campycheck.

In clinical laboratories, these less-studied pathogens may inadvertently be killed by the antibiotics used to identify the better-known ones. The likely result? An inaccurate picture of their prevalence and virulence. Campycheck may yield a detailed, accurate picture.

The Campylobacter studies in the United States and abroad might never completely eliminate the need for careful handling of raw poultry in our homes or the kitchens of school cafeterias, fine restaurants, and other eateries. But the research can reduce our chances of ever encountering this unruly microbe.

This research is part of Food Safety, an ARS National Program (#108) described on the World Wide Web at www.nps.ars.usda.gov.

To reach scientists mentioned in this story, contact Marcia Wood, USDA-ARS Information Staff, 5601 Sunnyside Ave., Beltsville, MD 20705-5129; phone (301) 504-1662, fax (301) 504-1641, e-mail marciawood@ars.usda.gov.

What Makes a Campylobacter Strain Virulent?

Here's the puzzle: You have two samples of what seem to be the food-poisoning microbe Campylobacter jejuni. A quick look at the specimens with a microarray assay (see main story) shows no immediately apparent differences in their genes. But when you expose piglets--animals susceptible to this microbe--to the bacteria, one strain makes the animals ill, while the other affects them only mildly.

Why the difference?

ARS food safety researchers Craig T. Parker, at Albany, California, and colleague Michael E. Konkel at Washington State University in Pullman, are designing a series of experiments that should enable them to find out. What's more, their work may help other scientists who are investigating the virulence of other major foodborne pathogens.

Even though their preliminary microarray scan failed to reveal significant differences in the C. jejuni specimens' DNA, this technology offers another option--one that allows them to delve more deeply.

Instead of beginning with the microbe's DNA, these followup assays begin with RNA--genetic material that's formed when the DNA, or genes, becomes active.

In these tests, the scientists will place the two strains in petri dishes with colonies of a type of human intestinal cell. Called epithelial cells, they're the target of real-life Campylobacter attacks. The researchers will take samples of the two strains at successive intervals, looking for changes in RNA that occur over time. RNA extracted from the strains provides tell-tale evidence of genes that went into action. The work is much like that of police detectives who analyze evidence to reconstruct what really happened at a crime scene. The scientists use an enzyme called reverse transcriptase to match up the RNA to a version of the DNA from which it originated. Then, they use the microarray assay to discern the differences between that DNA and the microbe's DNA as it existed at the outset of the experiment. The comparison should reveal genes that were activated in the attack and genes that remained silent.

In earlier work at Pullman, collaborator Konkel uncovered one such C. jejuni gene. Named ciaB, short for Campylobacter invasion antigen B, it cues the microbe to secrete a similarly named protein, CiaB, which apparently plays a crucial role in enabling the bacterium to penetrate epithelial cells. Though undoubtedly key to C. jejuni's invasions, it is unlikely to act alone. The West Coast scientists expect to uncover other genes that will lead them into the dark heart of Campylobacter's virulence.--By Marcia Wood, ARS.

COPYRIGHT 2004 U.S. Government Printing Office
COPYRIGHT 2005 Gale Group

Return to Campylobacter
Home Contact Resources Exchange Links ebay