The Aedes aegypti mosquito
Find information on thousands of medical conditions and prescription drugs.

Chikungunya

Chikungunya is a rare form of viral fever caused by an alphavirus that is spread by mosquito bites from the Aedes aegypti mosquito. The name is derived from the Swahili word meaning "that which bends up" in reference to the stooped posture developed as a result of the arthritic symptoms of the disease. more...

Home
Diseases
A
B
C
Angioedema
C syndrome
Cacophobia
Café au lait spot
Calcinosis cutis
Calculi
Campylobacter
Canavan leukodystrophy
Cancer
Candidiasis
Canga's bead symptom
Canine distemper
Carcinoid syndrome
Carcinoma, squamous cell
Carcinophobia
Cardiac arrest
Cardiofaciocutaneous...
Cardiomyopathy
Cardiophobia
Cardiospasm
Carnitine transporter...
Carnitine-acylcarnitine...
Caroli disease
Carotenemia
Carpal tunnel syndrome
Carpenter syndrome
Cartilage-hair hypoplasia
Castleman's disease
Cat-scratch disease
CATCH 22 syndrome
Causalgia
Cayler syndrome
CCHS
CDG syndrome
CDG syndrome type 1A
Celiac sprue
Cenani Lenz syndactylism
Ceramidase deficiency
Cerebellar ataxia
Cerebellar hypoplasia
Cerebral amyloid angiopathy
Cerebral aneurysm
Cerebral cavernous...
Cerebral gigantism
Cerebral palsy
Cerebral thrombosis
Ceroid lipofuscinois,...
Cervical cancer
Chagas disease
Chalazion
Chancroid
Charcot disease
Charcot-Marie-Tooth disease
CHARGE Association
Chediak-Higashi syndrome
Chemodectoma
Cherubism
Chickenpox
Chikungunya
Childhood disintegrative...
Chionophobia
Chlamydia
Chlamydia trachomatis
Cholangiocarcinoma
Cholecystitis
Cholelithiasis
Cholera
Cholestasis
Cholesterol pneumonia
Chondrocalcinosis
Chondrodystrophy
Chondromalacia
Chondrosarcoma
Chorea (disease)
Chorea acanthocytosis
Choriocarcinoma
Chorioretinitis
Choroid plexus cyst
Christmas disease
Chromhidrosis
Chromophobia
Chromosome 15q, partial...
Chromosome 15q, trisomy
Chromosome 22,...
Chronic fatigue immune...
Chronic fatigue syndrome
Chronic granulomatous...
Chronic lymphocytic leukemia
Chronic myelogenous leukemia
Chronic obstructive...
Chronic renal failure
Churg-Strauss syndrome
Ciguatera fish poisoning
Cinchonism
Citrullinemia
Cleft lip
Cleft palate
Climacophobia
Clinophobia
Cloacal exstrophy
Clubfoot
Cluster headache
Coccidioidomycosis
Cockayne's syndrome
Coffin-Lowry syndrome
Colitis
Color blindness
Colorado tick fever
Combined hyperlipidemia,...
Common cold
Common variable...
Compartment syndrome
Conductive hearing loss
Condyloma
Condyloma acuminatum
Cone dystrophy
Congenital adrenal...
Congenital afibrinogenemia
Congenital diaphragmatic...
Congenital erythropoietic...
Congenital facial diplegia
Congenital hypothyroidism
Congenital ichthyosis
Congenital syphilis
Congenital toxoplasmosis
Congestive heart disease
Conjunctivitis
Conn's syndrome
Constitutional growth delay
Conversion disorder
Coprophobia
Coproporhyria
Cor pulmonale
Cor triatriatum
Cornelia de Lange syndrome
Coronary heart disease
Cortical dysplasia
Corticobasal degeneration
Costello syndrome
Costochondritis
Cowpox
Craniodiaphyseal dysplasia
Craniofacial dysostosis
Craniostenosis
Craniosynostosis
CREST syndrome
Cretinism
Creutzfeldt-Jakob disease
Cri du chat
Cri du chat
Crohn's disease
Croup
Crouzon syndrome
Crouzonodermoskeletal...
Crow-Fukase syndrome
Cryoglobulinemia
Cryophobia
Cryptococcosis
Crystallophobia
Cushing's syndrome
Cutaneous larva migrans
Cutis verticis gyrata
Cyclic neutropenia
Cyclic vomiting syndrome
Cystic fibrosis
Cystinosis
Cystinuria
Cytomegalovirus
Dilated cardiomyopathy
Hypertrophic cardiomyopathy
Restrictive cardiomyopathy
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Medicines

This disease was first described in Tanzania, Africa in 1952. An outbreak of Chikungunya was discovered in Port Klang in Malaysia in 1999 affecting 27 people .

A serological test for Chikungunya is available from the University of Malaya in Kuala Lumpur, Malaysia.

It is closely related to O'nyong'nyong virus. (PMID 15891138)

Symptoms

The symptoms of this disease include fever which can reach 39 °C, a rash typically described as petechial or maculopapular usually involving the limbs and trunk, and arthralgia or arthritis affecting multiple joints which can be debilitating in severity. There can also be headache, conjunctival injection and slight photophobia.

Treatment

There is no specific treatment for Chikungunya. The illness is usually self-limiting and will resolve with time. Symptomatic treatment is recommended after excluding other more dangerous diseases.

Read more at Wikipedia.org


[List your site here Free!]


Outbreak of aflatoxin poisoning—Eastern and Central Provinces, Kenya, January-July 2004
From Morbidity and Mortality Weekly Report, 9/3/04 by J. Nyikal

In May 2004, CDC Kenya, trainees of the CDC-supported Field Epidemiology and Laboratory Training Program (FELTP) in Kenya, the World Health Organization, and CDC were invited by the Kenya Ministry of Health (KMOH) to participate in the investigation of an outbreak of jaundice with a high case-fatality rate (CFR) in the districts of Makueni and Kitui, Eastern Province. Preliminary laboratory testing of food collected from the affected area revealed high levels of aflatoxin, suggesting that the outbreak was caused by aflatoxin poisoning, as was a previous outbreak in the same area in 1981 (1). In the United States, aflatoxin concentrations are limited to 20 parts per billion (ppb), a level also adopted by Kenyan authorities. The 2004 outbreak resulted from widespread aflatoxin contamination of locally grown maize, which occurred during storage of the maize under damp conditions. Urgent replacement of the aflatoxin-contaminated maize with noncontaminated maize proved to be a critical intervention; however, as of July 21, a limited number of new cases continued to be detected. This report summarizes the preliminary results of the outbreak investigation. Aflatoxin poisoning likely will continue to be a public health problem until culturally appropriate storage methods for dry maize are implemented by the local population. In addition, enhanced surveillance for human aflatoxin poisoning and testing of commercially sold maize for aflatoxin levels will lead to long-term improvements in public health.

Joint KMOH and CDC teams conducted patient interviews and reviewed medical records dating back to January 1, in three health facilities in the Makueni and Kitui districts. Additional case finding was conducted through similar patient interviews and retrospective record reviews in seven health Facilities in adjacent districts of Eastern Province (Machakos, Embu, Mbeere, and Mwingi districts) and Central Province (Thika district) and at Kenyatta National Hospital in Nairobi (Figure 1). Large-scale active surveillance occurred from early May to late June. As of July 21, three health facilities in Makueni and Kitui districts continued to be monitored for new cases. A convenience sample of 20 patient households was visited to assess the occurrence of jaundice in nonhospitalized household members and to inspect food quality and storage. In this investigation, a case of suspected aflatoxin poisoning was defined as a case of acute jaundice that occurred after January 1, in a resident of Eastern or Central Province or a case diagnosed at Kenyatta National Hospital in a patient who was not known to have chronic liver disease or any other cause of jaundice.

[FIGURE 1 OMITTED]

As of July 20, a total of 317 cases had been reported, with 125 deaths (CFR = 39%). An increase in case reports began in the third week of April, with new cases continuing to occur through mid-July (Figure 2). Of the 308 patients for whom age data were available, 68 (22.1%) were aged <5 years; 90 (29.2%) were aged 5-14 years, and 150 (48.7%) were aged [greater than or equal to] 15 years. Of the 317 total patients, 178 (56.2%) were male, and 280 (88.3%) resided in four districts: Makueni (148 [46.7%]), Kitui (101 [31.8%]), Machakos (19 [6.0%]), and Thika (12 [3.8%]). The remaining 37 (11.7%) patients had aflatoxicosis diagnosed at Kenyatta National Hospital in Nairobi or at health facilities in Embu, Mbeere, or Mwingi districts. CFR was significantly higher in Makueni district (CFR = 49.3%) than in Kitui district (CFR = 23.7%) (CFR ratio = 2.1; 95% confidence interval [CI] = 1.4-3.1).

[FIGURE 2 OMITTED]

Preliminary results from a case-control study that compared 40 case-patients with 80 well controls matched by village in Makueni and Kitui districts demonstrated a statistically significant association between the development of jaundice and several risk Factors or markers, including 1) reported consumption of cooked maize kernels (odds ratio [OR] = 8.0; 95% CI = 1.7-37.1), 2) reported possession of homegrown maize that was discolored or visibly contaminated with mold (OR = 5.9; 95% CI = 1.9-18.2), 3) consumption of homegrown maize (OR = 3.0; 95% CI = 1.0-8.8), 3) storage of damp maize (OR = 3.5; 95% CI = 1.2-10.3), 4) inside storage of maize rather than outside granary storage (OR = 12.0; 95% CI = 1.5-95.7), and 5) reported deaths of dogs or livestock (OR = 3.3; 95% CI = 1.2-9.1).

Food samples collected from household visits during May 10-19 included maize flour, maize grains, dry maize cobs, muthokoi (i.e., maize in which the outer hulls have been removed), millet, sorghum, and beans. A total of 31 samples were tested by the Kenya National Public Health Laboratory Services, and 15 had >20 ppb aflatoxin [B.sub.1] (range: 20-8,000 ppb).

A representative survey of maize products from agricultural markets and outlets (Figure 3) in Makueni, Kitui, Thika, and Machakos districts was conducted to assess the extent and magnitude of aflatoxin contamination in the sampled maize. Preliminary results indicated widespread, high-level aflatoxin contamination. A total of 182 (53.2%) of 342 samples had >20 ppb of aflatoxin. In addition, a substantial percentage of samples from each district had aflatoxin levels >1,000 ppb: Makueni (12.1%), Kitui (9.6%), Thika (3.9%), and Machakos (2.9%).

[FIGURE 3 OMITTED]

The government of Kenya is providing replacement food in the most heavily affected districts: Makueni district (population: 771,545) and Kitui district (population: 515,422). Residents of affected districts have been advised to avoid consumption of maize or other foods suspected to be moldy of appearing discolored. In addition, food inspections by public health authorities are being conducted, and suspect food is being seized, destroyed, and replaced. Surveillance for possible aflatoxin poisoning in humans has been extended to other parts of Kenya by MOH, and aflatoxin screening of maize has been increased.

Acknowledgments

The findings in this report are based, in part, on contributions by Makindu Sub-District Hospital, Makueni district, Mutomo Mission Hospital, Kitui district, other health facilities, staff at the National Public Health Laboratory Svcs, Kenya.

Editorial Note: Evidence that this outbreak resulted from aflatoxin poisoning included 1) high levels of aflatoxin (up to 8,000 ppb) in maize samples collected from patient house-holds, 2) a clinical illness consistent with acute aflatoxin poisoning, 3) clustering of cases among residents of the same household, and 4) reports of deaths among animals known to have eaten the same maize as the patients during the same period. Serum specimens from a convenience sample of seven patients were tested for differential viral etiologies. All seven patients had negative serologic tests for yellow fever, dengue, West Nile virus, Rift Valley fever, Chikungunya and Bunyamwera viruses, acute hepatitis A, acute hepatitis B, and hepatitis C.

Aflatoxins are a group of metabolic products formed by two species of fungus, Aspergillus flavus and A. parasiticus, in several agricultural commodities, including com or maize. Two structural types of aflatoxins are known (B and G types), of which aflatoxin [B.sub.1] is considered the most toxic and was the type most commonly found in Kenya during this outbreak. Exposure to aflatoxins occurs primarily through ingestion of contaminated foods (2) and can cause hepatic and gastrointestinal injury and have immunosuppressive, teratogenic, and oncogenic effects. Chronic low-level aflatoxin exposure can increase the risk for hepatocellular carcinoma (3). Severe, acute liver injury with high morbidity and mortality has been associated with high-dose exposures to aflatoxins (4). Ingestion of 2-6 mg/day of aflatoxin for a month can cause acute hepatitis and death (5,6).

The largest reported outbreak of aflatoxicosis to date occurred in western India in 1974, resulting in 397 recognized cases and 106 deaths (6). The ongoing epidemic in Kenya already has resulted in 125 recognized deaths. Because of the remoteness of villages in the affected districts in Kenya and the large geographic area involved, case finding has been limited to medical facilities. In addition, because some persons might not have been able to reach health-care facilities for diagnosis and treatment, the true magnitude of this outbreak is likely to be considerably greater than reported.

An outbreak of acute aflatoxicosis (20 cases; CFR = 60%) was reported previously in Makueni district, Eastern Province, Kenya, in 1981 (1). Patients were clustered in family groups that shared meals consisting of aflatoxin-contaminated maize (1,600-12,000 ppb). Acute hepatitis associated with consumption of moldy grains also has been reported in other areas in Africa, Western India, and Malaysia (6-8), where affected persons came from areas prone to drought and malnutrition and unseasonable rains forced the harvest of grains before adequate drying had occurred. Typically, increased reports of jaundice and hepatitis followed within weeks of such harvests (6-8). Locally produced maize associated with this outbreak was harvested in February during peak rains, and the first illnesses were reported in Makueni district in late March and early April.

For every symptomatic case of aflatoxicosis identified, several other persons likely were exposed to unsafe levels of aflatoxin and might face future adverse health consequences. In addition, individual cases or clusters of aflatoxin poisoning likely occur regularly but are not recognized. Efforts should focus on the prevention of aflatoxin exposure by implementing extensive food replacement, without which, the epidemic can be expected to continue. Longer-term requirements include strengthened surveillance; increased food inspections to ensure food safety; and local education and assistance to ensure that maize is harvested correctly, dried completely, and stored properly.

This report describes the first investigation by the Kenya FELTP, a partnership of CDC, KMOH, and Jomo Kenyatta University of Agriculture and Technology intended to build public health, epidemiologic, and laboratory capacity in Kenya. This investigation provided field experience to these Kenyan public health workers in training and exemplified collaboration between different national and international agencies and among various sectors and disciplines, including health, agriculture, food safety, nutrition, and humanitarian relief. Increased collaboration between the health sector and others involved in food security and safety could enable early warning of high levels of aflatoxins.

As a result of widespread drought, Kenya faces an acute food shortage, with nearly 1.8 million persons in 26 districts vulnerable to food insecurity (9), including persons in the area most heavily affected by the aflatoxicosis outbreak. Because an estimated 166,000 metric tons of food will be required to meet the requirements of emergency and school feeding programs during August 2004-January 2005, public health officials should be vigilant to a possible wider aflatoxicosis outbreak resulting from the large-scale storage and distribution of certain emergency food supplies.

References

(1.) Ngindu A, Kenya PR, Ocheng DM, et al. Outbreak of acute hepatitis by aflatoxin poisoning in Kenya. Lancet 1982;319:1346-8.

(2.) Fung F, Clark RE Health effects of mycotoxins: a toxicological overview. J Toxicol Clin Toxicol 2004;42:217-34.

(3.) Peraica M, Radie B, Lucic A, Pavlovic M. Toxic effects of mycotoxins in humans. Bull World Health Organ 1999;77:754-66.

(4.) Chao TC, Maxwell SM, Wong SY. An outbreak of aflatoxicosis and boric acid poisoning in Malaysia: a clinicopathological study. J Pathol 1991;164:225-33.

(5.) Patten RC. Aflatoxins and disease. Am J Trop Med Hyg 1981;30:422-5.

(6.) Krishnamachari KA, Nagaarajan V, Bhat RV, Tilak TB. Hepatitis due to aflatoxicosis--an outbreak in Western India. Lancet 1975;305:1061-3.

(7.) Krishnamachari KA, Bhat RV, Nagarajan V, Tilak TBG. Investigations into an outbreak of hepatitis in parts of Western India. Indian J Med Res 1975;63:1036-49.

(8.) Lye MS, Ghazali AA, Mohan J, Alwin N, Nair RC. An outbreak of acute hepatic encephalopathy due to severe aflatoxicosis in Malaysia. Am J Trop Med Hyg 1995;53:68-72.

(9.) USAID Famine Early Warning Systems Network (Kenya), World Food Program, Kenya Ministry of Agriculture. Kenya food security report--August 9, 2004. Available at http://www.fews.net/centers/files/Kenya_200407en.pdf.

Reported by: J Nyikal, A Misore, C Nzioka, C Njuguna, E Muchiri, J Njau, S Maingi, J Njoroge, J Mutiso, J Onteri, A Langat, IK Kilei, J Nyamongo, G Ogana, B Muture, Aflatoxin Task Force, Kenya Ministry of Health; P Tukei, C Onyango, W Ochieng, Kenya Medical Research Institute; C Tetteh, S Likimani, P Nguku, T Galgalo, S Kibet, A Manya, A Dahiye, J Mwihia, I Mugoya, Kenya Field Epidemiology and Laboratory Training Program/Kenya Ministry of Health. J Onsongo, A Ngindu, World Health Organization Kenya Country Office. KM DeCock, K Lindblade, L Slutsker, P Amornkul, D Rosen, D Feiken, T Thomas, CDC Kenya. P Mensah, N Eseko, A Nejjar, World Health Organization Regional Office for Africa. M Onsongo, F Kessel, Foreign Agricultural Svc, U.S. Dept of Agriculture. H Njapau, DL Park, Center for Food Safety and Applied Nutrition, Food and Drug Administration. Div of International Health, Epidemiology Program Office; L Lewis, G Luber, H Rogers, L Backer, C Rubin, National Center for Environmental Health; KE Gieseker, E Azziz-Baumgartner, W Chege, A Bowen, EIS officers, CDC.

COPYRIGHT 2004 U.S. Government Printing Office
COPYRIGHT 2004 Gale Group

Return to Chikungunya
Home Contact Resources Exchange Links ebay