Find information on thousands of medical conditions and prescription drugs.

Colorado tick fever

In medicine Colorado Tick Fever is an illness caused by a virus of the Reovirus family carried by small mammals, such as ground squirrels, porcupines, and chipmunks, and by ticks. more...

Home
Diseases
A
B
C
Angioedema
C syndrome
Cacophobia
Café au lait spot
Calcinosis cutis
Calculi
Campylobacter
Canavan leukodystrophy
Cancer
Candidiasis
Canga's bead symptom
Canine distemper
Carcinoid syndrome
Carcinoma, squamous cell
Carcinophobia
Cardiac arrest
Cardiofaciocutaneous...
Cardiomyopathy
Cardiophobia
Cardiospasm
Carnitine transporter...
Carnitine-acylcarnitine...
Caroli disease
Carotenemia
Carpal tunnel syndrome
Carpenter syndrome
Cartilage-hair hypoplasia
Castleman's disease
Cat-scratch disease
CATCH 22 syndrome
Causalgia
Cayler syndrome
CCHS
CDG syndrome
CDG syndrome type 1A
Celiac sprue
Cenani Lenz syndactylism
Ceramidase deficiency
Cerebellar ataxia
Cerebellar hypoplasia
Cerebral amyloid angiopathy
Cerebral aneurysm
Cerebral cavernous...
Cerebral gigantism
Cerebral palsy
Cerebral thrombosis
Ceroid lipofuscinois,...
Cervical cancer
Chagas disease
Chalazion
Chancroid
Charcot disease
Charcot-Marie-Tooth disease
CHARGE Association
Chediak-Higashi syndrome
Chemodectoma
Cherubism
Chickenpox
Chikungunya
Childhood disintegrative...
Chionophobia
Chlamydia
Chlamydia trachomatis
Cholangiocarcinoma
Cholecystitis
Cholelithiasis
Cholera
Cholestasis
Cholesterol pneumonia
Chondrocalcinosis
Chondrodystrophy
Chondromalacia
Chondrosarcoma
Chorea (disease)
Chorea acanthocytosis
Choriocarcinoma
Chorioretinitis
Choroid plexus cyst
Christmas disease
Chromhidrosis
Chromophobia
Chromosome 15q, partial...
Chromosome 15q, trisomy
Chromosome 22,...
Chronic fatigue immune...
Chronic fatigue syndrome
Chronic granulomatous...
Chronic lymphocytic leukemia
Chronic myelogenous leukemia
Chronic obstructive...
Chronic renal failure
Churg-Strauss syndrome
Ciguatera fish poisoning
Cinchonism
Citrullinemia
Cleft lip
Cleft palate
Climacophobia
Clinophobia
Cloacal exstrophy
Clubfoot
Cluster headache
Coccidioidomycosis
Cockayne's syndrome
Coffin-Lowry syndrome
Colitis
Color blindness
Colorado tick fever
Combined hyperlipidemia,...
Common cold
Common variable...
Compartment syndrome
Conductive hearing loss
Condyloma
Condyloma acuminatum
Cone dystrophy
Congenital adrenal...
Congenital afibrinogenemia
Congenital diaphragmatic...
Congenital erythropoietic...
Congenital facial diplegia
Congenital hypothyroidism
Congenital ichthyosis
Congenital syphilis
Congenital toxoplasmosis
Congestive heart disease
Conjunctivitis
Conn's syndrome
Constitutional growth delay
Conversion disorder
Coprophobia
Coproporhyria
Cor pulmonale
Cor triatriatum
Cornelia de Lange syndrome
Coronary heart disease
Cortical dysplasia
Corticobasal degeneration
Costello syndrome
Costochondritis
Cowpox
Craniodiaphyseal dysplasia
Craniofacial dysostosis
Craniostenosis
Craniosynostosis
CREST syndrome
Cretinism
Creutzfeldt-Jakob disease
Cri du chat
Cri du chat
Crohn's disease
Croup
Crouzon syndrome
Crouzonodermoskeletal...
Crow-Fukase syndrome
Cryoglobulinemia
Cryophobia
Cryptococcosis
Crystallophobia
Cushing's syndrome
Cutaneous larva migrans
Cutis verticis gyrata
Cyclic neutropenia
Cyclic vomiting syndrome
Cystic fibrosis
Cystinosis
Cystinuria
Cytomegalovirus
Dilated cardiomyopathy
Hypertrophic cardiomyopathy
Restrictive cardiomyopathy
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Medicines

Anyone who lives or travels in areas of the western United States and Canada at elevations above 5000 feet and who comes in contact with infected ticks, especially Dermacentor andersoni, also known as the wood tick, can get Colorado Tick Fever.

Transmission

Colorado Tick Fever is acquired by tick bite. There is no evidence of natural person-to-person transmission. However, rare cases of transmission from blood transfusions have been reported. The virus which causes Colorado Tick Fever may stay in the blood for as long as four months after onset of the illness.

Symptoms

The disease causes fever of about 103 degrees Fahrenheit, chills, nausea, and severe headache. These symptoms usually last a few days, go away, and then return for a few days. Sometimes the symptoms include a red, raised rash as well as the desire to avoid sun light.

The symptoms generally begin 4 to 5 days after being bitten by an infected tick.

Removing ticks

Ticks should be removed promptly and carefully with tweezers and by applying gentle steady traction. the tick's body should not be crushed when it is removed and and the tweezers should be placed as close to the skin as possible to avoid leaving tick mouth parts in the skin. Ticks should not be removed with bare hands. Hands should be protected by gloves and/or tissues and thoroughly washed with soap and water after the removal process.

Prevention

To avoid tick bites and infection, experts advise:

  • Avoid tick infested areas, especially during the warmer months.
  • Wear light colored clothing so ticks can be easily seen. Wear a long sleeved shirt, hat, long pants, and tuck pant legs into socks.
  • Walk in the center of trails to avoid overhanging grass and brush.
  • Check your body every few hours for ticks when you spend a lot of time outdoors in tick infested areas. Ticks are most often found on the thigh, arms, underarms and legs. Ticks can be very small (no bigger than a pinhead). Look carefully for new "freckles".
  • Use insect repellents containing DEET on your skin or permethrin on clothing. Be sure to follow the directions on the container and wash off repellents when going indoors.
  • Remove attached ticks immediately.

Read more at Wikipedia.org


[List your site here Free!]


Tick-borne relapsing fever caused by Borrelia hermsii, Montana - Dispatches
From Emerging Infectious Diseases, 9/1/03 by Tom G. Schwan

Five persons contracted tick-borne relapsing fever after staying in a cabin in western Montana. Borrelia hermsii was isolated from the blood of two patients, and Ornithodoros hermsi ticks were collected from the cabin, the first demonstration of this bacterium and tick in Montana. Relapsing fever should be considered when patients who reside or have vacationed in western Montana exhibit a recurring febrile illness.

**********

Tick-borne relapsing fever, caused by Borrelia hermsii, is endemic in the higher elevations and coniferous forests of the western United States and southern British Columbia, Canada (1). Although many multicase outbreaks of relapsing fever associated with B. hermsii and its tick vector, Ornithodoros hermsi, have been reported (2-6), none has been documented in Montana. Patients usually become ill after they have slept in cabins infested with spirochete-infected ticks that feed quickly during the night. The illness has an incubation period of 4 to [greater than or equal to] 18 days and is characterized by recurring episodes of fever accompanied by a variety of other manifestations, including headache, myalgia, arthralgia, chills, vomiting, and abdominal pain (1). Relapsing fever is confirmed by the microscopic detection of spirochetes in the patient's blood (Figure 1) (7).

[FIGURE 1 OMITTED]

In 1927, relapsing fever was diagnosed in a a 33-year-old man in Walla Walla, Washington, although his possible site of exposure was Montana (8). A specific location was not given, however, and spirochetes causing the illness were not identified. Ornithodoros parkeri, another tick vector of relapsing fever spirochetes in western United States, was collected during 1936 in Beaverhead County in Southwestern Montana, and an undisclosed number of these ticks transmitted Borrelia parkeri to one mouse in the laboratory (9). If relapsing fever were to occur in Montana, B. parkeri transmitted by O. parkeri was suspected as being the likely etiologic agent (9,10).

In summer 2002, a multicase outbreak of relapsing fever associated with a privately owned cabin occurred in western Montana. Spirochetes were isolated from two patients and identified as B. hermsii, and this spirochete's tick vector, O. hermsi, was collected from the cabin where the patients slept. This is the first multicase outbreak of tick-borne relapsing fever in Montana and the first report of B. hermsii and O. hermsi in the state, thereby documenting the risk of this infection beyond the geographic range known previously within the United States.

The Study

From July 30 to August 20, 2002, a total of 5 persons in a group of 20 became ill with symptoms consistent with tick-borne relapsing fever during or following their visit to western Montana (Table). The common site of exposure was a cabin on the south shore of Wild Horse Island (47[degrees]50'30" N; 114[degrees]12'30" W) in southwest Flathead Lake, Lake County, Montana. The 875-hectare island became a state park in 1978, although 56 privately owned properties exist, many of which have cabins. No one lives permanently on the island, and camping overnight (by day visitors to the island) is not allowed. The island is approximately 4.6 km wide from east to west and 32 km wide from north to south; its elevation varies from 881 m at the shoreline to its highest point of 1,141 m. The island is separated from the mainland by 2.0 km to the south and 2.4 km to the north. The habitats include Ponderosa Pine and Douglas Fir forests, native grassland, and steep rocky outcroppings. Red squirrels (Tamiasciurus hudsonicus) and deer mice (Peromyscus maniculatus) are abundant.

On July 22, the first of four related families arrived at the cabin, and on July 25, a 54-year-old man (case 1. Table) entered the east end of the attic and removed nest material that had accumulated there. He slept at night and napped during the day in one of two bedrooms located immediately under the area of the attic where the nest material had been partially removed. On July 30, he became ill with fever, headache, arthralgia, myalgia, and rash, and 2 days later he visited the emergency room of a local hospital but a diagnosis was not made. Over the next several days he improved, and on August 6, he and his family began driving back to their home in Seattle, Washington. During the trip, he relapsed with another febrile episode. That evening, he was taken to the emergency room of a Seattle hospital and admitted early the next morning. On the basis of his history, a diagnosis of relapsing fever was considered, although spirochetes were not detected in the blood.

Three additional families (17 persons) arrived at the cabin on July 31 and on August 5 and departed on August 8 and 9. One family of five returned to their home in Seattle, and three of them became ill on August 12, 17, and 20 (cases 2-4). Relapsing fever was suspected immediately, and spirochetes were detected in Wright-stained blood smears from two patients (cases 2, 3). On August 10, a family of six returned to St. Louis, Missouri, where a 13-year-old boy (case 5) became ill the next day. On August 12, he was taken to an emergency room and to his pediatrician the following day. His mother communicated with the family in Seattle, where a young girl (case 2) was ill, and spirochetes had been detected in her blood. This discovery led to the detection of spirochetes in a blood smear from the boy. All patients had fever and other clinical manifestations consistent with tick-borne relapsing fever (Table). They were all treated with doxycycline, and all recovered with no subsequent relapses.

Blood smears from three of the Seattle patients (cases 2-4) were prepared and stained separately with monoclonal antibodies H9724, which recognizes all known species of Borrelia (11), and H9826, which is specific for B. hermsii (12), and rabbit hyperimmune serum to B. hermsii (Figure 2A). Indirect immunofluorescence assays (IFA) and microscopic analysis demonstrated spirochetes from two patients (cases 2, 3) that were reactive with all antibodies, which identified these bacteria as B. hermsii. Blood from the third patient (case 4) was negative for spirochetes with all antibodies. EDTA-treated whole-blood samples from these patients were injected intraperitoneally into mice, and the two samples positive by microscopic examination also produced detectable levels of spirochetemia in mice. Whole blood obtained from the infected mice was injected into modified Kelly's medium (BSK-H supplemented with 12% rabbit serum; Sigma-Aldrich Corp., St. Louis, MO), and spirochetes that originated from two patients were isolated.

[FIGURE 2 OMITTED]

A convalescent-phase serum sample from the first case-patient (case 1) was collected 55 days after the onset of his illness. This sample was examined by IFA with whole cells of B. hermsii (13) and by immunoblot with a whole-cell lysate of B. hermsii and recombinant GlpQ (13). The patient's IFA titer to B. hermsii was positive at 1:1,024, and the sample was positive by immunoblot at 1:100 dilution.

The five persons with confirmed or presumptive relapsing fever slept in two adjacent bedrooms in the east end of the cabin under the attic where animal nest material had been partially removed. People who slept only on the outside porch or in other bedrooms did not become ill. On August 24, 2002, the two east bedrooms were examined for ticks, but none were found. The remaining nest material was collected from the attic and taken to Rocky Mountain Laboratories. During the next several weeks, the material was processed with two small Berlese extraction funnels, which separate live arthropods from nonliving debris. Fourteen O. hermsi were recovered, including 1 larva, 10 nymphs, 2 males, and 1 female (Figure 2B). The postlarval stages of O. hermsi are very similar to those of O. sparnus, which parasitizes woodrats and deer mice in Utah and Arizona, but the latter species is air incompetent vector of B. hermsii (14,15). The larva collected from the cabin displayed morphologic characteristics consistent with O. hermsi. Voucher specimens (one nymph, one larva) of O. hermsi collected at the study site were deposited in the U.S. National Tick Collection, Georgia Southern University, under accession number RML 123385. The 12 remaining ticks were allowed to feed on a laboratory mouse to determine whether they were infectious. The blood of the mouse did not become spirochetemic during the 10 days after tick bite. These ticks were not examined for infection by other methods and were kept alive to establish a laboratory colony.

On June 21, 2003, the attic, utility room, and bedrooms where the infected persons slept were treated with an over-the-counter insecticide-acaricide (Ortho Indoor Insect Fogger, The Ortho Group, Columbus, OH). Sentinel O. hermsi ticks (late stage nymphs and adults) from a laboratory colony were confined in open flasks in one treated bedroom (46 [m.sup.3]) and a family room that was not treated to examine the efficacy of treatment. After the 4-hour application with two 141-gm cans of fogger, all 54 ticks in the treated bedroom were dead, whereas all 52 ticks in the untreated room were alive.

Discussion

Tick-borne relapsing fever caused by B. hermsii is acquired only within the geographic range of its specific tick vector, O. hermsi. This tick has been found in southern British Columbia, Washington, Idaho, Oregon, California, Nevada, Colorado, and the northern regions of Arizona and New Mexico (2,4,16). As this and other outbreaks demonstrate, patients often become ill after they leave disease-endemic areas where they were bitten by infectious ticks (2,6). One patient (case 1) remained untreated early in his illness in spite of seeking medical attention at a hospital near the site of exposure.

The cabin where the patients were infected has been owned by the same family for nearly 40 years. None of the members of the four related families questioned recalled any prior illnesses consistent with what they experienced with this outbreak of relapsing fever. The event that appears to have instigated this outbreak was the partial removal and disturbance of animal nest material in the east end of the attic. Some ticks presumably fell through the spaces between the ceiling boards to the two bedrooms below. The boy (case 5) slept all but part of one night on the porch, but during the night of August 6 a thunderstorm forced him indoors, and he moved to the front east bedroom. His onset of illness in St. Louis was on the afternoon of August 11, which equates to an incubation period of approximately 4.5 days. The incubation periods for the others were estimated at 5 to 15 days.

The animals that maintained the enzootic cycle with B. hermsii and O. hermsi in the cabin are unknown. Red squirrels are highly susceptible to infection with B. hermsii (17), are important hosts for these ticks (1), and were abundant in the forest surrounding the cabin. However, no evidence of squirrels was found in the cabin. Deer mice were routinely in the cabin, and the owners used poison bait stations to control the indoor population. One dead mouse was found near the cabin, and two carcasses were in the attic material that had been removed on July 25. American robins (Turdus migratorius) had nested in the attic, and two dead robin chicks were found in the material collected from the attic on August 24. Recently, a B. hermsii--like spirochete was implicated in the death of a northern spotted owl (Strix occidentalis) in Kittitas County, Washington (18), and many years ago, 26 O. hermsi were collected from the nest of a bluebird (either Sialia mexicana or S. currucoides) in Summerland, British Columbia (19). The role of birds in perpetuating relapsing fever spirochetes and their tick vectors in nature is worthy of further investigation. A serologic survey of red squirrels and deer mice in the vicinity the cabin for immunologic evidence of exposure to B. hermsii might also help explain the enzootic involvement of these rodents.

This outbreak demonstrated for the first time that B. hermsii and its tick vector O. hermsi exist in Montana and caused multiple cases of relapsing fever. Owners of cabins in the vicinity where the outbreak occurred met with the Montana state epidemiologist and received information regarding the epidemiology and prevention of tick-borne relapsing fever. Although the outbreak was localized, a large area of western Montana has the appropriate ecologic parameters to support enzootic cycles that provide the potential for relapsing fever caused by B. hermsii to occur. A diagnosis of relapsing fever should therefore be considered when patients who have resided or vacationed in western Montana seek treatment for a recurrent febrile illness.

Acknowledgments

We thank those involved with this outbreak for their interest, patience, information, and logistic support; Merry Schrumpf, Sandra Raffel, Ted Hackstadt and Gary Hettrick for technical assistance; Carol Schwan for help in the field; staff of the St. Louis Children's Hospital, St. Louis, Missouri, for their assistance; Peter Talbot, Burt Finch, Jerry Sawyer, and Montana Fish, Game and Parks for boat transportation to the island: and James Musser, Mark Fisher, and Amy Henion for reviewing the manuscript.

References

(1.) Dworkin MS, Schwan TG, Anderson DE Jr. Tick-borne relapsing fever in North America. Med Clin North Amer 2002;86:417-33.

(2.) Boyer KM, Munford RS, Maupin GO, Pattison CP, Fox MD, Barnes AM, et al. Tick-borne relapsing fever: an interstate outbreak originating al Grand Canyon National Park. Am J Epidemiol 1977;105:469-79.

(3.) Centers for Disease Control and Prevention. Common source outbreak of relapsing fever--California. MMWR Morb Mortal Wkly Rep 1990;39:579;585-6.

(4.) Espinoza H, McCaig N, Cutler RE, Reed WP. Relapsing fever in New Mexico. Rocky Mtn Med J 1977;74:321-3.

(5.) Thompson RS, Burgdorfer W, Russell R, Francis BJ. Outbreak of tick-borne relapsing fever in Spokane County, Washington. JAMA 1969;210:1045-50.

(6.) Trevejo RT, Schriefer ME, Gage KL, Safranek TJ, Orloski KA, Pape WJ, et al., An interstate outbreak of tick-borne relapsing fever among vacationers at a Rocky Mountain cabin. Am J Trop Med Hyg 1998:58:743-7.

(7.) Schwan TG, Burgdorfer W, Rosa PA. Borrelia. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, editors. Manual of clinical microbiology. Washington: American Society for Microbiology; 1999.p.746-58.

(8.) Tollefsen AD. Relapsing fever. Med Bull Vet Admin 1935;12:84-5.

(9.) Davis GE. Ornithodoros parkeri: distribution and host data; spontaneous infection with relapsing fever spirochetes. Pub Health Rep 1939;54:1345-9.

(10.) Gage KL, Eggleston ME, Gilmore RD Jr, Dolan MC, Montenieri JA, Tanda DT, et al. Isolation and characterization of Borrelia parkeri in Ornithodoros parkeri (Ixodida: Argasidae) collected in Colorado. J Med Entomol 2001;38:665-74.

(11.) Barbour AG, Hayes SF, Heiland RA, Schrumpf ME, Tessier SL. A Borrelia-specific monoclonal antibody binds to a flagellar epitope. Infect Immun 1986;52:549-54.

(12.) Schwan TG, Gage KL, Karstens RH, Schrumpf ME, Hayes SF, Barbour AG. Identification of the tick-borne relapsing fever spirochete Borrelia hermsii by using a species-specific monoclonal antibody. J Clin Microbiol 1992;30:790-5.

(13.) Schwan TG, Schrumpf ME, Hinnebusch BJ, Anderson DE, Konkel ME. GlpQ: an antigen for serological discrimination between relapsing fever and Lyme borelliosis. J Clin Microbiol 1996;34:2483-92.

(14.) Davis GE, Mavros AJ. An atypical Ornithodoros hermsi from Utah (Ixodoidea, Argasidae). J Parasite] 1956;42:293-6.

(15.) Kohls GM, Clifford CM. Ornithodoros sparnus sp. n., a parasite of wood rats, Neotoma spp. and deer mice, Peromyscus spp. in Utah and Arizona (Acarina: Argasidae). J Parasitol 1963;49:857-61.

(16.) Cooley RA, Kohls GM. The Argasidae of North America, Central America and Cuba. American Midland Naturalist; 1944. Monograph No. 1:1-152,

(17.) Burgdorfer W, Mavros AJ. Susceptibility of various species of rodents to the relapsing fever spirochete, Borrelia hermsii. Infect Immun 1970;2:256-9.

(18.) Thomas NJ, Bunikis J, Barbour AG, Wolcott MJ. Fatal spirochetosis due to a relapsing fever-like Borrelia sp. in a northern spotted owl. J Wildl Dis 2002;38:187-93.

(19.) Gregson JD. Notes on the occurrence of Ornithodoros hermsi in British Columbia, and its probable relation to relapsing fever. Argasidae, Ixodoidae. Proc Entomol Soc British Columbia 1948;45:15-6.

Portions of this research were supported by National Institute of Allergy and Infectious Diseases grant AI-40729 to J.E.K.

Dr. Schwan is a senior investigator in the Laboratory of Human Bacterial Pathogenesis at the Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases. His research interests include medical entomology, the serodiagnosis of vector-borne infections, and how bacterial pathogens adapt for their biologic transmission by ticks and fleas.

Address for correspondence: Tom Schwan, Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, NIAID, NIH, 903 South 4th Street, Hamilton, MT 59840, USA; fax: 406-363-9445; email: tom_schwan@nih.gov

Tom G. Schwan, * Paul F. Policastro, * Zachary Miller, ([dagger]) Robert L. Thompson, ([dagger]) Todd Damrow, ([double dagger]) and James E. Keirans ([section])

* Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, USA, ([dagger]) Group Health Cooperative of Puget Sound, Seattle, Washington, USA ([double dagger]) Department of Public Health, State of Montana, Helena, Montana, USA; and ([section]) Georgia Southern University, Statesboro, Georgia, USA

COPYRIGHT 2003 U.S. National Center for Infectious Diseases
COPYRIGHT 2003 Gale Group

Return to Colorado tick fever
Home Contact Resources Exchange Links ebay