Find information on thousands of medical conditions and prescription drugs.

Creutzfeldt-Jakob disease

Creutzfeldt-Jakob Disease (CJD) is a very rare and incurable brain disease that is ultimately fatal. It is the most common of the transmissible spongiform encephalopathies (TSEs). It is a progressive neurological disorder which belongs to a group of degenerative neurologic diseases known as subacute spongiform encephalopathies. more...

Home
Diseases
A
B
C
Angioedema
C syndrome
Cacophobia
Café au lait spot
Calcinosis cutis
Calculi
Campylobacter
Canavan leukodystrophy
Cancer
Candidiasis
Canga's bead symptom
Canine distemper
Carcinoid syndrome
Carcinoma, squamous cell
Carcinophobia
Cardiac arrest
Cardiofaciocutaneous...
Cardiomyopathy
Cardiophobia
Cardiospasm
Carnitine transporter...
Carnitine-acylcarnitine...
Caroli disease
Carotenemia
Carpal tunnel syndrome
Carpenter syndrome
Cartilage-hair hypoplasia
Castleman's disease
Cat-scratch disease
CATCH 22 syndrome
Causalgia
Cayler syndrome
CCHS
CDG syndrome
CDG syndrome type 1A
Celiac sprue
Cenani Lenz syndactylism
Ceramidase deficiency
Cerebellar ataxia
Cerebellar hypoplasia
Cerebral amyloid angiopathy
Cerebral aneurysm
Cerebral cavernous...
Cerebral gigantism
Cerebral palsy
Cerebral thrombosis
Ceroid lipofuscinois,...
Cervical cancer
Chagas disease
Chalazion
Chancroid
Charcot disease
Charcot-Marie-Tooth disease
CHARGE Association
Chediak-Higashi syndrome
Chemodectoma
Cherubism
Chickenpox
Chikungunya
Childhood disintegrative...
Chionophobia
Chlamydia
Chlamydia trachomatis
Cholangiocarcinoma
Cholecystitis
Cholelithiasis
Cholera
Cholestasis
Cholesterol pneumonia
Chondrocalcinosis
Chondrodystrophy
Chondromalacia
Chondrosarcoma
Chorea (disease)
Chorea acanthocytosis
Choriocarcinoma
Chorioretinitis
Choroid plexus cyst
Christmas disease
Chromhidrosis
Chromophobia
Chromosome 15q, partial...
Chromosome 15q, trisomy
Chromosome 22,...
Chronic fatigue immune...
Chronic fatigue syndrome
Chronic granulomatous...
Chronic lymphocytic leukemia
Chronic myelogenous leukemia
Chronic obstructive...
Chronic renal failure
Churg-Strauss syndrome
Ciguatera fish poisoning
Cinchonism
Citrullinemia
Cleft lip
Cleft palate
Climacophobia
Clinophobia
Cloacal exstrophy
Clubfoot
Cluster headache
Coccidioidomycosis
Cockayne's syndrome
Coffin-Lowry syndrome
Colitis
Color blindness
Colorado tick fever
Combined hyperlipidemia,...
Common cold
Common variable...
Compartment syndrome
Conductive hearing loss
Condyloma
Condyloma acuminatum
Cone dystrophy
Congenital adrenal...
Congenital afibrinogenemia
Congenital diaphragmatic...
Congenital erythropoietic...
Congenital facial diplegia
Congenital hypothyroidism
Congenital ichthyosis
Congenital syphilis
Congenital toxoplasmosis
Congestive heart disease
Conjunctivitis
Conn's syndrome
Constitutional growth delay
Conversion disorder
Coprophobia
Coproporhyria
Cor pulmonale
Cor triatriatum
Cornelia de Lange syndrome
Coronary heart disease
Cortical dysplasia
Corticobasal degeneration
Costello syndrome
Costochondritis
Cowpox
Craniodiaphyseal dysplasia
Craniofacial dysostosis
Craniostenosis
Craniosynostosis
CREST syndrome
Cretinism
Creutzfeldt-Jakob disease
Cri du chat
Cri du chat
Crohn's disease
Croup
Crouzon syndrome
Crouzonodermoskeletal...
Crow-Fukase syndrome
Cryoglobulinemia
Cryophobia
Cryptococcosis
Crystallophobia
Cushing's syndrome
Cutaneous larva migrans
Cutis verticis gyrata
Cyclic neutropenia
Cyclic vomiting syndrome
Cystic fibrosis
Cystinosis
Cystinuria
Cytomegalovirus
Dilated cardiomyopathy
Hypertrophic cardiomyopathy
Restrictive cardiomyopathy
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Medicines

Causes

TSEs (also known as prion diseases) are caused by a unique type of infectious agent called prions, an abnormally-structured form of a protein found in the brain. Other prion diseases include Gerstmann-Sträussler-Scheinker syndrome (GSS), fatal familial insomnia (FFI) and kuru in humans, as well as BSE and scrapie in animals.

The prion that is believed to cause Creutzfeldt-Jakob exhibits at least two stable conformations. One, the native state, is water soluble and present in healthy cells. As of 2006, its biological function is unknown. The other conformational state is very poorly water-soluble and readily forms protein aggregates.

The CJD prion is dangerous because it promotes refolding of native proteins into the diseased state. The number of misfolded protein molecules will increase exponentially and the process leads to a large quantity of insoluble prions in affected cells. This mass of insoluble proteins disrupts cell function and causes cell death. Once the prion is transmitted, the defective proteins invade the brain and get produced in a self-sustaining feedback loop, causing exponential spread of the prion, and the patient dies within a few months; a few patients live as long as two years.

Incidence and prevalence

Although CJD is the most common human prion disease, it is still extremely rare and only occurs in about one out of every one million people. It usually affects people aged 45–75, most commonly appearing in people between the ages of 60–65. The exception to this is the more recently-recognised 'variant' CJD (vCJD), which occurs in younger people.

CDC monitors the occurrence of CJD in the United States through periodic reviews of national mortality data: According to the CDC:

  • CJD occurs worldwide at a rate of about 1 case per million population per year.
  • On the basis of mortality surveillance from 1979 to 1994, the annual incidence of CJD remained stable at approximately 1 case per million persons in the United States.
  • In the United States, CJD deaths among persons younger than 30 years of age are extremely rare (fewer than 5 deaths per billion per year).
  • The disease is found most frequently in patients 55–65 years of age, but cases can occur in persons older than 90 years and younger than 55 years of age.
  • In more than 85 percent of cases, the duration of CJD is less than 1 year (median: 4 months) after onset of symptoms.

Symptoms

The first symptom of CJD is rapidly progressive dementia, leading to memory loss, personality changes and hallucinations. This is accompanied by physical problems such as speech impairment, jerky movements (myoclonus), balance and coordination dysfunction (ataxia), changes in gait, rigid posture, and seizures. The duration of the disease varies greatly, but sporadic (non-inherited) CJD can be fatal within months or even weeks (Johnson, 1998). In most patients, these symptoms are followed by involuntary movements and the appearance of a typical diagnostic electroencephalogram tracing.

Read more at Wikipedia.org


[List your site here Free!]


Creutzfeldt-Jakob disease not related to a common venue—New Jersey, 1995-2004
From Morbidity and Mortality Weekly Report, 5/14/04 by P. Gambetti

On May 7, this report was posted as an MMWR Early Release on the MMWR website (http://www.cdc.gov/mmwr).

Beginning in June 2003, the New Jersey Department of Health and Senior Services (NJDHSS) and CDC were notified of a suspected cluster of deaths caused by Creutzfeldt-Jakob disease (CJD) in persons reportedly linked to Garden State Racetrack in Cherry Hill, New Jersey. Concerns were raised that these deaths might have resulted from consumption of meat contaminated with the agent causing bovine spongiform encephalopathy (BSE, commonly called "mad cow disease") served at racetrack restaurants during 1988-1992. Consumption of BSE-contaminated cattle products has been linked to a new variant form of CJD (vCJD) in humans. This report summarizes the results of an investigation that determined the deaths were not linked causally to a common source of infection. The findings underscore the need for physicians to arrange for brain autopsies of all patients with clinically suspected or diagnosed CJD.

Available clinical and neuropathologic findings were reviewed for 17 suspected CJD deaths referred to NJDHSS and CDC. To investigate the deaths of these 17 persons, all of whom were reportedly linked to Garden State Racetrack, health-care providers were contacted and relevant medical records obtained by NJDHSS, other state health departments, and CDC. Providers were asked to submit available brain autopsy tissue to the National Prion Disease Pathology Surveillance Center (NPDPSC), a national prion disease diagnostic referral laboratory established by CDC and the American Association of Neuropathologists.

Sufficient demographic and clinical information was available to classify 11 of the 17 deaths as resulting from a definite or probable case of a classic form of CJD *, on the basis of World Health Organization criteria (1). Of the remaining six decedents, neuropathologic analyses documented that three deaths resulted from causes unrelated to either vCJD or classic CJD (Table 1). Three deaths reported as resulting from CJD remain under investigation. Excluding the three deaths for which CJD was ruled out, the 14 remaining deaths occurred over a period of approximately 9.25 years (1995-2004); the average number of cases per complete year (i.e., excluding 2004) was 1.44 (range: zero to three cases). Eleven of the 14 decedents were male; median age was 69.5 years (range: 50-83 years). Six of the decedents resided in New Jersey, four in Pennsylvania, and one each in Connecticut, Delaware, Maryland, and Virginia.

Neuropathologic analysis in the five definite cases with available brain tissue specimens was diagnostic of classic CJD; none had the characteristic pathologic findings of vCJD. A genotype at codon 129 of the prion protein gene (a genetic marker associated with specific subtypes of CJD) was determined for three of the five CJD deaths confirmed pathologically (Table 1). None of the decedents had the methionine homozyogosity or the characteristic Western blot pattern present for persons with vCJD. In addition, the reported CJD subtypes differed from one another. For the six deaths without tissue diagnosis, available clinical and diagnostic evidence, including illness duration, electroencephalographic patterns, and presence of protein 14-3-3 (a marker for classic CJD) in cerebrospinal fluid was consistent with a probable diagnosis of classic CJD (Tables 1 and 2). None of the decedents had a diagnosis of vCJD.

For 1995-2002, using CDC's national multiple cause-of-death file (2002 data are preliminary) compiled annually by the National Center for Health Statistics, the annual death rate from CJD in the United States has been stable at approximately one case per 1 million persons per year (Figure 1). The CJD death rate for New Jersey during the same period was similar.

[FIGURE 1 OMITTED]

In 2001, Garden State Racetrack was closed permanently. The number and ages of all persons visiting or dining at the racetrack is unknown, However, according to New Jersey Racing Commission records, attendance at the racetrack during 1988-1992 was approximately 4.1 million. Based on an annual CJD rate of 3.4 cases per 1 million persons (CDC, unpublished data, 2004) and an overall death rate from all causes of 2.9% for persons aged [greater than or equal to] 50 years, the occurrence over approximately 9.25 years (1995-2004) of at least 14 CJD-related deaths among as few as 300,000 persons aged [greater than or equal to] 50 years would not be unusual. This number is within the estimated range of the number of persons attending and dining at the racetrack, given the known attendance.

Editorial Note: CJD is a neurodegenerative disease characterized by rapidly progressive dementia associated with brain pathology marked by diffuse spongiform degeneration; the disease is invariably fatal (2). According to the leading hypothesis, CJD is caused by an unconventional transmissible agent, an abnormal protein (i.e., prion) that is able to induce abnormal folding of normal cellular proteins, leading to neuronal death. Prions are believed to cause transmissible spongiform encephalopathies (TSEs) that include scrapie in sheep, BSE in cattle, chronic wasting disease (CWD) in deer and elk, and CJD in humans.

Two major forms of CJD have been recognized, classic and variant (3). Classic CJD has been recognized since the early 1920s and is characterized by certain distinct clinical and diagnostic features (Table 2). The most common form of classic CJD is believed to occur sporadically, caused by the spontaneous transformation of normal prion proteins into abnormal prions. This sporadic disease occurs worldwide at a rate of approximately one case per 1 million population per year, although rates of up to two cases per million are not unusual (4). Risk increases with age, and in persons aged >50 years, the annual rate is approximately 3.4 cases per million.

Variant CJD was first described in 1996 in the United Kingdom and has different clinical characteristics than classic CJD (Table 2) (2,3). The median age at death for vCJD patients is 28 years, compared with 68 years for patients with classic CJD (Figure 2). In addition, all vCJD cases have neuropathologic findings distinctly different from those of classic CJD (5), and all have had a particular genetic profile (i.e., homozygosity for methionine) at codon 129 of the prion protein gene (4). Thus, cases of vCJD can be distinguished from classic CJD on the basis of clinical and pathologic data. Epidemiologic and laboratory evidence indicate that the agent causing BSE in cattle can be transmitted to humans via consumption of BSE-contaminated cattle products, causing vCJD (2,3). However, this evidence also suggests that the risk is low for having vCJD, even after consumption of contaminated product. In 1996, because of the emergence of vCJD in the United Kingdom, CDC enhanced its surveillance for CJD in the United States (6).

[FIGURE 2 OMITTED]

No evidence has indicated that any of the 17 reported deaths resulted from vCJD. The CJD subtypes were determined in four decedents, and the subtype in each differed from the others; this heterogeneity provides scientific evidence against a common etiology for these cases. Although one study reported that BSE-infected mice expressing methionine homozygosity at codon 129 produced prions with a molecular phenotype consistent with a subtype of classic CJD (7), these animal data cannot be reliably extrapolated to humans in the absence of other supporting evidence. In 2003, the Spongiform Encephalopathy Advisory Committee of the United Kingdom concluded that these data did "not provide strong evidence to support" the hypothesis that exposure to BSE can produce a sporadic CJD-like phenotype in humans (8). In the United Kingdom, where the largest epidemic of BSE has occurred and an unusually large proportion of the population has been exposed to the BSE agent, the absence of an unusually high incidence of classic CJD patients or an elevated proportion of CJD patients with methionine homozygosity at codon 129 (9) supports the lack of association between BSE and sporadic CJD. In the United Kingdom, prion disease experts have looked specifically for evidence of BSE-related disease other than vCJD among classic CJD cases. No evidence of a new phenotype has been uncovered (R.G. Will, M.D., National CJD Surveillance Unit, Western General Hospital, Edinburgh, Scotland, personal communication, 2004).

Neuropathologic evaluation, particularly by immunohistochemistry or Western blot, is the most definitive method to 1) diagnose human prion diseases, 2) monitor for vCJD and various subtypes of CJD, and 3) detect the possible emergence of new prion diseases in the United States. Although not all decedents in this investigation had pathologic specimens available for review, demonstration of the absence of a classic CJD of vCJD diagnosis in certain patients and diagnosis of classic CJD in others indicated these patients did not die from BSE-related disease. This investigation underscores the need for physicians to pursue autopsies of all decedents with clinically suspected and diagnosed CJD and to use the TSE diagnostic services provided free of charge by NPDPSC. Information regarding this surveillance center is available at http://www.cjdsurveillance.com or by telephone, 404-639-3091.

CDC will continue to work with and support state health officials in New Jersey and nationally to conduct surveillance for CJD. Better defining the normal occurrence of subtypes of sporadic CJD and other TSEs will facilitate earlier recognition of vCJD of any other human prion disease that might emerge in the United States.

* Those types of CJD that differ from vCJD and usually indicate sporadic CJD.

References

(1.) World Health Organization. Global surveillance, diagnosis, and therapy of human transmissible spongiform encephalopathies: report of a WHO consultation, 1998. WHO/EMC/ZDI/98.9. Available at http://www. who.int/emcdocuments/tse/docs/whoemczdi989.pdf.

(2.) Belay E, Schonberger L. Variant Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. Clin Lab Med 2002;22:849-62.

(3.) Brown P, Will RG, Bradley R, Asher DM, Detwiler L. Bovine spongiform encephalopathy and variant Creutzfeldt-Jakob disease: background, evolution, and current concerns. Emerg Infect Dis 2001;7:6-16.

(4.) Will RG, Alpers MP, Dormont D, Schonberger LB. Infectious and sporadic prion diseases. In: Prusiner SB, ed. Prion Biology and Diseases. New York, New York: Cold Spring Harbor Laboratory Press, 2004:629-71.

(5.) Ironside JW. Neuropathologic findings in new variant CJD and experimental transmission of BSE. FEMS Immunol Med Microbiol 1998; 21:91-5.

(6.) Belay ED, Maddox RA, Gambetti P, Schonberger LB. Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States. Neurology 2003;60:176-81.

(7.) Asante EA, Linehan JM, Desbruslais M, et al. BSE prions propogate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein. EMBO J 2002;23:6358-66.

(8.) European Spongiform Encephalopathy Advisory Committee. Final minutes of the 77th annual meeting, February 11, 2003. Available at http://www.seac.gov.uk/minutes/final77.pdf.

(9.) Maddox RA, Belay ED, Schonberger LB. Reply to Singletary. Re: Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States (Letter). 2003. Available at http://www.neurology.org/ cgi/eletters/60/2/176.

P Gambetti, MD, National Prion Disease Pathology Surveillance Center, Case Western Reserve Univ, Cleveland, Ohio. J Hadler, MD. Connecticut Dept of Public Health. A Hathcock, PhD, M Drees, MD, Delaware Health and Social Svcs. D Blythe, MD, Maryland Dept of Health and Mental Hygiene. E Bresnitz, MD, M Gerwel, MD, New Jersey Dept of Health and Senior Svcs. M Hawkins, MD, Philadelphia Dept of Public Health; A Weltman, MD, Pennsylvania Dept of Health. J Marr, MD, A Buckler, MD, C Novak, MD, Virginia Health Dept. C Rothwell, MS, K Kochanek, MA, R Anderson, PhD, Div of Vital Statistics. National Center for Health Statistics; J Sejvar, MD, E Belay, MD, R Maddox, MPH, A Curns, MPH, R Holman, MS, L Schonberger, MD, Div of Viral and Rickettsial Diseases, National Center for Infectious Diseases, CDC.

COPYRIGHT 2004 U.S. Government Printing Office
COPYRIGHT 2004 Gale Group

Return to Creutzfeldt-Jakob disease
Home Contact Resources Exchange Links ebay