Find information on thousands of medical conditions and prescription drugs.

Hantavirus pulmonary syndrome

Hantaviruses belong to the bunyavirus family of viruses. There are 5 genera within the bunyaviridae family: bunyavirus, phlebovirus, nairovirus, tospovirus, and hantavirus. Each is made up of negative-sensed, single-stranded RNA viruses. All these genera include arthropod-borne viruses, with the exception of hantavirus, which is a genus of rodent-borne agents. more...

Home
Diseases
A
B
C
D
E
F
G
H
Hairy cell leukemia
Hallermann Streiff syndrome
Hallux valgus
Hantavirosis
Hantavirus pulmonary...
HARD syndrome
Harlequin type ichthyosis
Harpaxophobia
Hartnup disease
Hashimoto's thyroiditis
Hearing impairment
Hearing loss
Heart block
Heavy metal poisoning
Heliophobia
HELLP syndrome
Helminthiasis
Hemangioendothelioma
Hemangioma
Hemangiopericytoma
Hemifacial microsomia
Hemiplegia
Hemoglobinopathy
Hemoglobinuria
Hemolytic-uremic syndrome
Hemophilia A
Hemophobia
Hemorrhagic fever
Hemothorax
Hepatic encephalopathy
Hepatitis
Hepatitis A
Hepatitis B
Hepatitis C
Hepatitis D
Hepatoblastoma
Hepatocellular carcinoma
Hepatorenal syndrome
Hereditary amyloidosis
Hereditary angioedema
Hereditary ataxia
Hereditary ceroid...
Hereditary coproporphyria
Hereditary elliptocytosis
Hereditary fructose...
Hereditary hemochromatosis
Hereditary hemorrhagic...
Hereditary...
Hereditary spastic...
Hereditary spherocytosis
Hermansky-Pudlak syndrome
Hermaphroditism
Herpangina
Herpes zoster
Herpes zoster oticus
Herpetophobia
Heterophobia
Hiccups
Hidradenitis suppurativa
HIDS
Hip dysplasia
Hirschsprung's disease
Histoplasmosis
Hodgkin lymphoma
Hodgkin's disease
Hodophobia
Holocarboxylase...
Holoprosencephaly
Homocystinuria
Horner's syndrome
Horseshoe kidney
Howell-Evans syndrome
Human parvovirus B19...
Hunter syndrome
Huntington's disease
Hurler syndrome
Hutchinson Gilford...
Hutchinson-Gilford syndrome
Hydatidiform mole
Hydatidosis
Hydranencephaly
Hydrocephalus
Hydronephrosis
Hydrophobia
Hydrops fetalis
Hymenolepiasis
Hyperaldosteronism
Hyperammonemia
Hyperandrogenism
Hyperbilirubinemia
Hypercalcemia
Hypercholesterolemia
Hyperchylomicronemia
Hypereosinophilic syndrome
Hyperhidrosis
Hyperimmunoglobinemia D...
Hyperkalemia
Hyperkalemic periodic...
Hyperlipoproteinemia
Hyperlipoproteinemia type I
Hyperlipoproteinemia type II
Hyperlipoproteinemia type...
Hyperlipoproteinemia type IV
Hyperlipoproteinemia type V
Hyperlysinemia
Hyperparathyroidism
Hyperprolactinemia
Hyperreflexia
Hypertension
Hypertensive retinopathy
Hyperthermia
Hyperthyroidism
Hypertrophic cardiomyopathy
Hypoaldosteronism
Hypocalcemia
Hypochondrogenesis
Hypochondroplasia
Hypoglycemia
Hypogonadism
Hypokalemia
Hypokalemic periodic...
Hypoparathyroidism
Hypophosphatasia
Hypopituitarism
Hypoplastic left heart...
Hypoprothrombinemia
Hypothalamic dysfunction
Hypothermia
Hypothyroidism
Hypoxia
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Medicines

The word hantavirus is derived from the Hantaan River, where the Hantaan virus (the etiologic agent of Korean hemorrhagic fever) was first isolated. The disease associated with Hantaan virus is called Korean hemorrhagic fever (a term that is no longer in use) or hemorrhagic fever with renal syndrome (HFRS), a term that is accepted by the World Health Organization.

History

Hantaviruses are a relatively newly discovered class of virus; the disease entity HFRS was first recognized by Western medicine during the Korean War in the early 1950s. In 1993, a newly-recognized species of hantavirus was found to be behind the Hantavirus cardiopulmonary syndrome (HCPS, also called HPS) caused by the Sin Nombre virus in New Mexico and other Four Corners states. In addition to Hantaan virus and Sin Nombre virus, several other hantaviruses have been implicated as etiologic agents for either HFRS or HCPS.

Geographic distribution and epidemiology

Regions especially affected by HFRS include China, the Korean Peninsula, Russia (Hantaan, Puumala and Seoul viruses), and northern and western Europe (Puumala and Dobrava viruses). Regions with the highest incidences of HCPS include Patagonian Argentina, Chile, Brazil, the United States, Canada, and Panama, where a milder form of disease that spares the heart has been recognized. The two agents of HCPS in South America are Andes virus (also called Oran, Castelo de Sonhos, Lechiguanas, Juquitiba, Araraquara, and Bermejo viruses, among many other synonyms), which is the only hantavirus that has shown (only in a few clusters of cases) an interpersonal form of transmission, and Laguna Negra virus, an extremely close relative of the previously-known Rio Mamore virus. In the U.S., minor causes of HCPS include New York virus, Bayou virus, and possibly Black Creek Canal virus.

Virology

Like other members of the bunyavirus family, hantaviruses are enveloped viruses with a genome that consists of three single-stranded RNA segments designated S (small), M (medium), and L (large). All hantaviral genes are encoded in the negative (genome complementary) sense. The S RNA encodes the nucleocapsid (N) protein. The M RNA encodes a polyprotein that is cotranslationally cleaved to yield the envelope glycoproteins G1 and G2. The L RNA encodes the L protein, which functions as the viral transcriptase/replicase. Within virions, the genomic RNAs of hantaviruses are thought to complex with the N protein to form helical nucleocapsids, the RNA component of which circularizes due to sequence complementarity between the 5' and 3' terminal sequences of each genomic segment.

Hantaviruses replicate exclusively in the host cell cytoplasm. Entry into host cells is thought to occur by attachment of virions to cellular receptors and subsequent endocytosis. Nucleocapsids are introduced into the cytoplasm by pH-dependent fusion of the virion with the endosomal membrane. Transcription of viral genes must be initiated by association of the L protein with the three nucleocapsid species. In addition to transcriptase and replicase functions, the viral L protein is also thought to have an endonuclease activity that cleaves cellular messenger RNAs (mRNAs) for the production of capped primers used to initiate transcription of viral mRNAs. As a result of this "cap snatching," the mRNAs of hantaviruses are capped and contain nontemplated 5' terminal extensions. The G1 (aka Gn) and G2 (Gc) glycoproteins form hetero-oligomers and are then transported from the endoplasmic reticulum to the Golgi complex, where glycosylation is completed. The L protein produces nascent genomes by replication via a positive-sense RNA intermediate. Hantavirus virions are believed to assemble by association of nucleocapsids with glycoproteins embedded in the membranes of the Golgi, followed by budding into the Golgi cisternae. Nascent virions are then transported in secretory vesicles to the plasma membrane and released by exocytosis.

Read more at Wikipedia.org


[List your site here Free!]


Two cases of Hantavirus pulmonary syndrome—Randolph County, West Virginia, July 2004
From Morbidity and Mortality Weekly Report, 11/26/04 by J. Rooney

Hantavirus puhnonary syndrome (HPS) is a rare cardiopulmonary disease caused by viruses of the genus Hantavirus, for which rodents are the natural reservoir (1,2). Transmission to humans occurs by direct contact with rodents of their excreta of by inhalation of aerosolized infectious material (e.g., dust created by disturbing rodent nests). In July 2004, HPS cases (including one fatal case) were reported in two persons believed to have been exposed at sites approximately 12 miles apart in Randolph County, West Virginia (2000 population: 28,254) (3). This report describes the two cases and summarizes their epidemiologic and environmental investigations. Clinicians and the public need to be educated about the risk for HPS and methods to reduce that risk.

Case Investigations

Patient A. In early July, a wildlife sciences graduate student, a man aged 32 years, visited an emergency department (ED) in Blacksburg, Virginia, with complaints of fever, cough, and sore chest since the previous evening. The ED clinician noted possible rodent exposure in the medical history of the patient. Examination revealed a temperature of 102.7[degrees]F (39.3[degrees]C) and an oxygen saturation of 96% (normal). A complete blood count (CBC) revealed a left shift with no bands (granulocytes: 87%) and lymphopenia (lymphocytes: 400/m[m.sup.3]). Radiographic examination indicated faint right-sided pneumonia. In the ED, the graduate student began vomiting and was admitted for intravenous hydration and parenteral antibiotics. He became progressively hypoxic, requiring supplemental oxygen, bilevel positive airway pressure, and eventually intubation with mechanical ventilation. Repeated radiographs revealed bilateral pulmonary edema.

The next day, the patient was hypotensive, requiring intravenous pressor support. He received activated protein C to prevent disseminated intravascular coagulation (DIC). A repeat CBC revealed bands (granulocytes: 20%) and a decreased platelet count (115,000/m[m.sup.3]); urinalysis indicated mild hematuria and proteinuria. Despite aggressive supportive care, the patient's status continued to deteriorate, and he died on the third day of his hospitalization. Differential diagnosis included tularemia, pneumococcal sepsis, and HPS. Serum specimens submitted to ARUP Laboratories (Salt Lake City, Utah) were positive for both IgG and IgM antibodies to hantaviruses; these test results were confirmed by CDC. A spleen biopsy was also positive by immunohistochemistry for hantavirus antigens. A serum sample was positive for hantavirus RNA by real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Sequencing of the amplified nucleic acid identified the virus as Monongahela hantavirus (4).

According to interviews with his coworkers, the patient had spent the previous month trapping small mammals for study and handling mice (Peromyscus spp.) daily. Two students and a recent graduate who had worked with the patient reported that none of them had consistently worn gloves while handling rodents of washed their hands after handling rodents of their excreta, even before eating. The students also reported frequent rodent bites on their bare hands.

Patient B. In early July, a Randolph County resident, a man aged 41 years, spent a weekend at a log cabin with his family. Two days later, he had Fatigue, a dull headache, and a mild fever. The following day, he had a temperature of 102.9[degrees]F (39.4 [degrees] C). The next morning, he visited his primary-car physician with hematuria but no fever and was released on empiric antibiotic therapy for a possible urinary tract infection.

The patient returned 2 days later with a severe headache of approximately 12 hours' duration; he was referred immediately to the local ED. On arrival, the patient was hypoxic with a room air oxygen saturation of 90%; chest radiographs revealed right-sided pneumonia and congestive heart failure. The patient was airlifted to a referral hospital, with hypotension and bradycardia. His white blood cell count was normal, and cardiac enzymes were negative. The patient was placed in the intensive care unit and administered intravenous pressors and broad-spectrum antibiotics. Differential diagnosis included viral myocarditis, atypical pneumonia, and opportunistic infection, and was later broadened to include HPS and other infectious and autoimmune etiologies.

The patient was intubated the next day and started on high-frequency oscillator ventilatory support. The patient's condition deteriorated, with onset of thrombocytopenia, DIC, hypoalbuminemia, and renal insufficiency requiring hemodialysis. After 5 days of hospitalization, his condition began to improve. Serum samples were reported positive for IgG and IgM antibodies to hantaviruses by ARUP Laboratories; these results were confirmed by CDC. In addition, a serum sample taken during his hospitalization was positive for hantavirus RNA by RT-PCR. Sequencing of the amplified nucleic acid also identified the virus as Monongahela hantavirus. The patient recovered slowly during the next month.

According to family members, when the patient and his family arrived at the cabin in early July, they aired the interior after finding it reeking of rodent urine and discovered two live mice in a trash can in the kitchen. The patient killed the mice and later disposed of the remains and cleaned the trash can without wearing gloves. The family slept in the cabin that weekend and trapped six additional mice during their stay.

Environmental Investigation

On August 3, investigators from CDC and the West Virginia Department of Health and Human Resources discovered additional live mice in the trash can in the cabin of patient B. Openings in the walls and eaves were identified that permitted easy entry by rodents. In all, rodents were trapped by the investigating team during August 3-6 from three rural sites in Randolph County: 1) the dormitory in which patient A lived and its surroundings, 2) a forest trapping site where patient A worked the week before his illness, and 3) the family cabin and surroundings of patient B. Fourteen white-footed mice (P. leucopus) and one deer mouse (P. maniculatus) were captured from 239 traps during a 3-day period. Tissue and blood specimens were collected and processed for serology. RT-PCR was conducted on specimens of rodents with positive serology results. Hantavirus antibodies were detected in one white-footed mouse, which was also positive for virus RNA by RT-PCR. Sequence of the amplified RNA indicated that the mouse was infected with Monongahela hantavirus identical to virus identified in rodents collected from the location where patient B was presumed to have been infected. The amplified nucleic acid sequence was similar, but not identical, to that amplified from patient A.

Editorial Note: Since HPS was first identified in the southwestern United States in 1993, a total of 379 laboratory-confirmed cases of HPS have been reported in the United States, including 32 retrospectively identified cases that occurred before 1993. Cases have been reported in 31 states, the majority of cases in the Southwest. Three cases of HPS have been identified as acquired in West Virginia. Subclinical infections are rare, according to antibody prevalence studies performed after the 1993 outbreak (5-7).

In the first case described in this report, exposure was probably occupational. Patient A regularly handled multiple mice, often suffered bites, and reportedly did not routinely wash his hands after handling rodents. In the second case, the exposure was peridomestic, likely associated with contact with live mice and their excreta while removing them from his cabin. Despite the temporal and geographic proximity of the two cases, no common exposure source, other than the rodent contact described, appears to exist.

These cases underscore the need to educate the public and clinicians about the risk for HPS in areas outside the Southwest. In addition, persons who have occupational exposure to rodents and their excreta should be trained in proper animal handling and use of personal protective equipment. Simple, effective methods are available to reduce exposure to hantaviruses (Box). Adherence to these precautions can reduce the incidence of HPS.

BOX. Epidemiology, diagnosis, treatment, and prevention of hantavirus pulmonary syndrome (HPS)

Epidemiology

* Zoonotic disease caused by viruses in the genus Hantavirus

* Transmitted to humans by exposure to excreta of infected rodents

* Incubation period: 1-5 weeks

* Cases reported throughout the United States

* U.S. case-fatality rate: 37%

Clinical and laboratory findings

* Prodrome of fever, myalgias, cough, and nausea/vomiting

* Rapid progression after the prodrome to pulmonary edema and nonischemic, cardiogenic shock

* Acute respiratory distress syndrome on chest raiograph

* Thrombocytopenia and hemoconcentration

* Confirmation by serology; additional confirmation by immunohistochemistry or reverse transciptase-polymerase chain reaction

Treatment

* Intensive supportive care, including early intubation and mechanical ventilation; intravenous pressors

* Early placement of pulmonary artery catheter

* Judicious volume resuscitation

* No specific antiviral treatment available

Prevention

* Find and seal rodent entry-holes in building

* Trap rodents in and around building using snap traps

* Before handling dead rodents, rodent feces, nests, or contaminated surfaces, spray thoroughly with a household disinfectant or diluted household bleach (one part bleach added to nine parts tap water)

* Wear disposable gloves when handling rodents or their excreta and wash hands immediately afterwards

* Report suspected cases to state health department

* Additional information is available at http:// www.cdc.gov/hantavirus or refer to http://www.cdc.gov/ mmwr/preview/mmwrhtml/rr5109a1.htm.

Acknowledgments

The report is based on data provided by P Keyser, PhD, MeadWestvaco Corporation, Elkins; M Fisher, MD, Ruby Memorial Hospital, Morgantown; J Crum, PhD, West Virginia Div of Natural Resources. M Kelly, PhD, Dept of Fisheries and Wildlife Science, Virginia Polytechnic Institute and State Univ, Blacksburg, Virginia.

References

(1.) Hantavirus pulmonary syndrome. In: Chin J, ed. Control of communicable diseases manual. 17th ed. Washington, DC: American Public Health Association; 2000:234-6.

(2.) CDC. Hantavirus pulmonary syndrome (HPS): 1996 case definition. Atlanta, GA: US Department of Health and Human Services, CDC; 2004. Available at http://www.cdc.gov/epo/dphsi/casedef/ hantaviruscurrent.htm.

(3.) United States Census Bureau. United States census 2000. Available at http://www.census.gov.

(4.) Song JW, Baek LJ, Nagle JW, Schlittcr D, Yanagihara R. Genetic and phylogenetic analyses of hantaviral sequences amplified from archival tissues of deer mice (Peromyscus maniculatus nubiterrae) captured in the eastern United States. Arch Virol 1996;141:959-67.

(5.) Simonsen L, Dalton MJ, Brciman RF, et al. Evaluation of the magnitude of the 1993 hantavirus outbreak in the southwestern United States. J Infect Dis 1995;172:729-33.

(6.) Vitek CR, Breiman RF, Ksiazek TG, et al. Evidence against person-to-person transmission of hantavirus to health care workers. Clin Infect Dis 1996;22:824-6.

(7.) Zeitz PS, Graber JM, Voorhees RA, et al. Assessment of occupational risk for hantavirus infection in Arizona and New Mexico. J Occup Environ Med 1997;39:463-7.

Reported by: Randolph County Dept of Health; J Rooney, DVM, West Virginia Dept of Health and Human Resources. K McCombs, MPH, New River Health District, Virginia Dept of Health. Div of Viral and Rickeettsial Diseases, National Center for Infectious Diseases; B Pavlin, MD, J Sinclair, DVM, EIS officers, CDC

COPYRIGHT 2004 U.S. Government Printing Office
COPYRIGHT 2004 Gale Group

Return to Hantavirus pulmonary syndrome
Home Contact Resources Exchange Links ebay