Find information on thousands of medical conditions and prescription drugs.

Hepatitis B

Originally known as serum hepatitis, hepatitis B has only been recognized as such since World War II, and has caused current epidemics in parts of Asia and Africa. Hepatitis B is recognized as endemic in China and various other parts of Asia. Over one-third of the world's population has been or is actively infected by hepatitis B virus (acronym HBV). more...

Home
Diseases
A
B
C
D
E
F
G
H
Hairy cell leukemia
Hallermann Streiff syndrome
Hallux valgus
Hantavirosis
Hantavirus pulmonary...
HARD syndrome
Harlequin type ichthyosis
Harpaxophobia
Hartnup disease
Hashimoto's thyroiditis
Hearing impairment
Hearing loss
Heart block
Heavy metal poisoning
Heliophobia
HELLP syndrome
Helminthiasis
Hemangioendothelioma
Hemangioma
Hemangiopericytoma
Hemifacial microsomia
Hemiplegia
Hemoglobinopathy
Hemoglobinuria
Hemolytic-uremic syndrome
Hemophilia A
Hemophobia
Hemorrhagic fever
Hemothorax
Hepatic encephalopathy
Hepatitis
Hepatitis A
Hepatitis B
Hepatitis C
Hepatitis D
Hepatoblastoma
Hepatocellular carcinoma
Hepatorenal syndrome
Hereditary amyloidosis
Hereditary angioedema
Hereditary ataxia
Hereditary ceroid...
Hereditary coproporphyria
Hereditary elliptocytosis
Hereditary fructose...
Hereditary hemochromatosis
Hereditary hemorrhagic...
Hereditary...
Hereditary spastic...
Hereditary spherocytosis
Hermansky-Pudlak syndrome
Hermaphroditism
Herpangina
Herpes zoster
Herpes zoster oticus
Herpetophobia
Heterophobia
Hiccups
Hidradenitis suppurativa
HIDS
Hip dysplasia
Hirschsprung's disease
Histoplasmosis
Hodgkin lymphoma
Hodgkin's disease
Hodophobia
Holocarboxylase...
Holoprosencephaly
Homocystinuria
Horner's syndrome
Horseshoe kidney
Howell-Evans syndrome
Human parvovirus B19...
Hunter syndrome
Huntington's disease
Hurler syndrome
Hutchinson Gilford...
Hutchinson-Gilford syndrome
Hydatidiform mole
Hydatidosis
Hydranencephaly
Hydrocephalus
Hydronephrosis
Hydrophobia
Hydrops fetalis
Hymenolepiasis
Hyperaldosteronism
Hyperammonemia
Hyperandrogenism
Hyperbilirubinemia
Hypercalcemia
Hypercholesterolemia
Hyperchylomicronemia
Hypereosinophilic syndrome
Hyperhidrosis
Hyperimmunoglobinemia D...
Hyperkalemia
Hyperkalemic periodic...
Hyperlipoproteinemia
Hyperlipoproteinemia type I
Hyperlipoproteinemia type II
Hyperlipoproteinemia type...
Hyperlipoproteinemia type IV
Hyperlipoproteinemia type V
Hyperlysinemia
Hyperparathyroidism
Hyperprolactinemia
Hyperreflexia
Hypertension
Hypertensive retinopathy
Hyperthermia
Hyperthyroidism
Hypertrophic cardiomyopathy
Hypoaldosteronism
Hypocalcemia
Hypochondrogenesis
Hypochondroplasia
Hypoglycemia
Hypogonadism
Hypokalemia
Hypokalemic periodic...
Hypoparathyroidism
Hypophosphatasia
Hypopituitarism
Hypoplastic left heart...
Hypoprothrombinemia
Hypothalamic dysfunction
Hypothermia
Hypothyroidism
Hypoxia
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Medicines

Molecular biology

The hepatitis B virus is a member of the Hepadnavirus family. It consists of a proteinaceous core particle containing the viral genome in the form of double stranded DNA and an outer lipid-based envelope with embedded proteins. The envelope proteins are involved in viral binding and release into susceptible cells. The inner capsid relocates the DNA genome to the cell's nucleus where viral mRNAs are transcribed. Three subgenomic transcripts encoding the envelope proteins are made, along with a poorly understood transcript encoding the X protein, whose function is still under debate. A fourth pre-genomic RNA is transcribed, which is exported to the cytosol and translates the viral polymerase and core proteins. Polymerase and pre-genomic RNA are encapsidated in assembling core particles, where reverse transcription of the pre-genomic RNA to genomic DNA occurs by the polymerase protein. The mature core particle then exits the cell via normal secretory pathways, acquiring an envelope along the way.

Hepatitis B is one of a few known non-retroviral viruses which employ reverse transcription as part of its replication process. Other viruses which use reverse transcription include HTLV or HIV, the virus that causes AIDS, but HIV and hepatitis B are not related. Hepatitis B's genome is DNA, and reverse transcription is one of the latter steps in making new viral particles, whereas HIV has an RNA genome and reverse transcription is one of the first steps in replication.

Transmission

Hepatitis B is largely transmitted through exposure to bodily fluids containing the virus. This includes unprotected sexual contact, blood transfusions, re-use of contaminated needles and syringes, vertical transmission from mother to child during childbirth, and so on. The primary method of transmission depends on the prevalence of the disease in a given area. In low prevalence areas, such as the continental United States, IV drug abuse and unprotected sex are the primary method. In moderate prevalence areas, the disease is predominantly spread among children. In high prevalence countries, such as China, vertical transmission is most common. Without intervention, a mother who is positive for the hepatitis B surface antigen confers a 20% risk of passing the infection to her offspring at the time of birth. This risk is as high as 90% if the mother is also positive for the hepatitis B e antigen.

Roughly 16-40% of unimmunized sexual partners of individuals with hepatitis B will be infected through sexual contact. The risk of transmission is closely related to the rate of viral replication in the infected individual at the time of exposure.

Clinical consequences and complications

Hepatitis B virus infection may either be acute (self-limited) or chronic (long-standing). Persons with self-limited infection clear the infection spontaneously within weeks to months.

Read more at Wikipedia.org


[List your site here Free!]


Hepatitis B vaccine linked to MS
From Science News, 9/25/04

Scientists have found that people who develop multiple sclerosis (MS) are more likely than others to have received a hepatitis B vaccination in recent years. Earlier studies investigating a link between the muscle-weakening disease and the vaccine had produced predominantly negative results.

"We were very surprised" by the new finding, says study coauthor Miguel A. Hernan, an epidemiologist at the Harvard School of Public Health in Boston.

Hernan and his colleagues identified 163 MS patients in Britain who had been diagnosed with MS between 1993 and 2000. The scientists matched these patients with 1,604 people without MS who had used the same physicians' offices and were of similar age, gender, and smoking status.

The MS patients were about three times as likely to have had hepatitis B shots in the 3 years preceding onset of MS symptoms as the others were during that same period, Hernan and his coworkers report in the September Neurology. Among the MS patients, 6.7 percent had had a recent hepatitis B vaccination, compared with 2.4, percent among the control group.

The researchers stress that the new study does not prove that the vaccine causes MS. In fact, they note that more than 93 percent of MS patients identified in the study hadn't received hepatitis B shots at all. Nevertheless, the findings suggest a need for scientists to analyze the vaccine's components closely and to confirm the new results, Hernan says. "The last thing we want to do is destroy the reputation of a vaccine that has proved to be very effective and very safe," he says.

Hepatitis B infects 350 million people worldwide and can lead to liver cancer or cirrhosis; MS affects about 2.5 million people.--N.S.

COPYRIGHT 2004 Science Service, Inc.
COPYRIGHT 2004 Gale Group

Return to Hepatitis B
Home Contact Resources Exchange Links ebay