Find information on thousands of medical conditions and prescription drugs.

Hereditary ataxia

Ataxia (from Greek ataxiā, meaning failure to put in order) is unsteady and clumsy motion of the limbs or trunk due to a failure of the gross coordination of muscle movements. more...

Home
Diseases
A
B
C
D
E
F
G
H
Hairy cell leukemia
Hallermann Streiff syndrome
Hallux valgus
Hantavirosis
Hantavirus pulmonary...
HARD syndrome
Harlequin type ichthyosis
Harpaxophobia
Hartnup disease
Hashimoto's thyroiditis
Hearing impairment
Hearing loss
Heart block
Heavy metal poisoning
Heliophobia
HELLP syndrome
Helminthiasis
Hemangioendothelioma
Hemangioma
Hemangiopericytoma
Hemifacial microsomia
Hemiplegia
Hemoglobinopathy
Hemoglobinuria
Hemolytic-uremic syndrome
Hemophilia A
Hemophobia
Hemorrhagic fever
Hemothorax
Hepatic encephalopathy
Hepatitis
Hepatitis A
Hepatitis B
Hepatitis C
Hepatitis D
Hepatoblastoma
Hepatocellular carcinoma
Hepatorenal syndrome
Hereditary amyloidosis
Hereditary angioedema
Hereditary ataxia
Hereditary ceroid...
Hereditary coproporphyria
Hereditary elliptocytosis
Hereditary fructose...
Hereditary hemochromatosis
Hereditary hemorrhagic...
Hereditary...
Hereditary spastic...
Hereditary spherocytosis
Hermansky-Pudlak syndrome
Hermaphroditism
Herpangina
Herpes zoster
Herpes zoster oticus
Herpetophobia
Heterophobia
Hiccups
Hidradenitis suppurativa
HIDS
Hip dysplasia
Hirschsprung's disease
Histoplasmosis
Hodgkin lymphoma
Hodgkin's disease
Hodophobia
Holocarboxylase...
Holoprosencephaly
Homocystinuria
Horner's syndrome
Horseshoe kidney
Howell-Evans syndrome
Human parvovirus B19...
Hunter syndrome
Huntington's disease
Hurler syndrome
Hutchinson Gilford...
Hutchinson-Gilford syndrome
Hydatidiform mole
Hydatidosis
Hydranencephaly
Hydrocephalus
Hydronephrosis
Hydrophobia
Hydrops fetalis
Hymenolepiasis
Hyperaldosteronism
Hyperammonemia
Hyperandrogenism
Hyperbilirubinemia
Hypercalcemia
Hypercholesterolemia
Hyperchylomicronemia
Hypereosinophilic syndrome
Hyperhidrosis
Hyperimmunoglobinemia D...
Hyperkalemia
Hyperkalemic periodic...
Hyperlipoproteinemia
Hyperlipoproteinemia type I
Hyperlipoproteinemia type II
Hyperlipoproteinemia type...
Hyperlipoproteinemia type IV
Hyperlipoproteinemia type V
Hyperlysinemia
Hyperparathyroidism
Hyperprolactinemia
Hyperreflexia
Hypertension
Hypertensive retinopathy
Hyperthermia
Hyperthyroidism
Hypertrophic cardiomyopathy
Hypoaldosteronism
Hypocalcemia
Hypochondrogenesis
Hypochondroplasia
Hypoglycemia
Hypogonadism
Hypokalemia
Hypokalemic periodic...
Hypoparathyroidism
Hypophosphatasia
Hypopituitarism
Hypoplastic left heart...
Hypoprothrombinemia
Hypothalamic dysfunction
Hypothermia
Hypothyroidism
Hypoxia
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Medicines

Ataxia often occurs when parts of the nervous system that control movement are damaged. People with ataxia experience a failure of muscle control in their arms and legs, resulting in a lack of balance and coordination or a disturbance of gait. While the term ataxia is primarily used to describe this set of symptoms, it is sometimes also used to refer to a family of disorders. It is not, however, a specific diagnosis.

Most disorders that result in ataxia cause cells in the part of the brain called the cerebellum to degenerate, or atrophy. Sometimes the spine is also affected. The phrases cerebellar degeneration and spinocerebellar degeneration are used to describe changes that have taken place in a person’s nervous system; neither term constitutes a specific diagnosis. Cerebellar and spinocerebellar degeneration have many different causes. The age of onset of the resulting ataxia varies depending on the underlying cause of the degeneration.

Many ataxias are hereditary and are classified by chromosomal location and pattern of inheritance: autosomal dominant, in which the affected person inherits a normal gene from one parent and a faulty gene from the other parent; and autosomal recessive, in which both parents pass on a copy of the faulty gene. Among the more common inherited ataxias are Friedreich’s ataxia and Machado-Joseph disease. Sporadic ataxias can also occur in families with no prior history.

Ataxia can also be acquired. Conditions that can cause acquired ataxia include stroke, multiple sclerosis, tumors, lesions of the central nervous system or spinal cord, alcoholism, peripheral neuropathy, metabolic disorders, and vitamin deficiencies.

Dysdiadochokinesia is a sign of cerebellar ataxia.

Ataxia is also the name of a band featuring John Frusciante (of the Red Hot Chili Peppers), Joe Lally (of Fugazzi), and Josh Klinghoffer. Frusciante plays synthesizer, guitar, and vocals; Lally plays bass; Klinghoffer plays percussion.

Read more at Wikipedia.org


[List your site here Free!]


Optic atrophy
From Gale Encyclopedia of Medicine, 4/6/01 by Laurie L. Barclay

Definition

Optic atrophy can be defined as damage to the optic nerve resulting in a degeneration or destruction of the optic nerve. Optic atrophy may also be referred to as optic nerve head pallor because of the pale appearance of the optic nerve head as seen at the back of the eye. Possible causes of optic atrophy include: optic neuritis, Leber's hereditary optic atrophy, toxic or nutritional optic neuropathy, glaucoma, vascular disorders, trauma, and other systemic disorders.

Description

The process of vision involves light entering the eye and triggering chemical changes in the retina, a pigmented layer lining the back of the eye. Nerve impulses created by this process travel to the brain via the optic nerve. Using a hand-held instrument called an ophthalmoscope, the doctor can see the optic nerve head (optic disc) which is the part of the optic nerve that enters at the back of the eyeball. In optic atrophy, the disc is pale and has fewer blood vessels than normal.

Causes & symptoms

Symptoms of optic atrophy are a change in the optic disc and a decrease in visual function. This change in visual function can be a decrease in sharpness and clarity of vision (visual acuity) or decreases in side (peripheral) vision. Color vision and contrast sensitivity can also be affected.

There are many possible causes of optic atrophy. The causes can range from trauma to systemic disorders. Some possible causes of optic atrophy include:

  • Optic neuritis. Optic neuritis is an inflammation of the optic nerve. It may be associated with eye pain worsened by eye movement. It is more common in young to middle-aged women. Some patients with optic neuritis may develop multiple sclerosis later on in life.
  • Leber's hereditary optic neuropathy. This is a disease of young men (late teens, early 20s), characterized by an onset over a few weeks of painless, severe, central visual loss in one eye, followed weeks or months later by the same process in the other eye. At first the optic disc may be slightly swollen, but eventually there is optic atrophy. The visual loss is generally permanent. This condition is hereditary. If a patient knows that Leber's runs in the family, genetic counseling should be considered.
  • Toxic optic neuropathy. Nutritional deficiencies and poisons can be associated with gradual vision loss and optic atrophy, or with sudden vision loss and optic disc swelling. Toxic and nutritional optic neuropathies are uncommon in the United States, but took on epidemic proportions in Cuba in 1992-1993. The most common toxic optic neuropathy is known as tobacco-alcohol amblyopia, thought to be caused by exposure to cyanide from tobacco smoking, and by low levels of vitamin B12 because of poor nutrition and poor absorption associated with drinking alcohol. Other possible toxins included ethambutol, methyl alcohol (moonshine), ethylene glycol (antifreeze), cyanide, lead, and carbon monoxide. Certain medications have also been implicated. Nutritional optic neuropathy may be caused by deficiencies of protein, or of the B vitamins and folate, associated with starvation, malabsorption, or alcoholism.
  • Glaucoma. Glaucoma may be caused by an increase of pressure inside the eye. This increased pressure may eventually affect the optic nerve if left untreated.
  • Compressive optic neuropathy. This is the result of a tumor or other lesion putting pressure on the optic nerve. Another possible cause is enlargement of muscles involved in eye movement seen in hyperthyroidism (Graves' disease).
  • Retinitis pigmentosa. This is a hereditary ocular disorder.
  • Syphilis. Left untreated, this disease may result in optic atrophy.

Diagnosis

Diagnosis involves recognizing the characteristic changes in the optic disc with an ophthalmoscope, and measuring visual acuity, usually with an eye chart. Visual field testing can test peripheral vision. Color vision and contrast sensitivity can also be tested. Family history is important in the diagnosis of inherited conditions. Exposure to poisons, drugs, and even medications should be determined. Suspected poisoning can be confirmed through blood and urine analysis, as can vitamin deficiency.

Brain magnetic resonance imaging (MRI) may show a tumor or other structure putting pressure on the optic nerve, or may show plaques characteristic of multiple sclerosis, which is frequently associated with optic neuritis. However, similar MRI lesions may appear in Leber's hereditary optic neuropathy. Mitochondrial DNA testing can be done on a blood sample, and can identify the mutation responsible for Leber's.

Visual evoked potentials (VEP), which measure speed of conduction over the nerve pathways involved in sight, may detect abnormalities in the clinically unaffected eye in early cases of Leber's. Fluorescein angiography gives more detail about blood vessels in the retina.

Treatment

Treatment of optic neuritis with steroids is controversial. As of mid 1998, there is no known treatment for Leber's hereditary optic neuropathy. Treatment of other causes of optic atrophy varies depending upon the underlying disease.

Prognosis

Many patients with optic neuritis eventually develop multiple sclerosis. Most patients have a gradual recovery of vision after a single episode of optic neuritis, even without treatment. Prognosis for visual improvement in Leber's hereditary optic neuropathy is poor, with the specific rate highly dependent on which mitochondrial DNA mutation is present. If the cause of toxic or nutritional deficiency optic neuropathy can be found and treated early, such as stopping smoking and taking vitamins in tobacco-alcohol amblyopia, vision generally returns to near normal over several months' time. However, visual loss is often permanent in cases of long-standing toxic or nutritional deficiency optic neuropathy.

Prevention

People noticing a decrease in vision (central and/or side vision) should ask their eye care practitioner for a check up. Patients should also go for regular vision exams. Patients should ask their doctor how often that should be, as certain conditons may warrant more frequent exams. Early detection of inflammations or other problems lessens the chance of developing optic atrophy.

As of mid 1998, there are no preventive measures that can definitely abort Leber's hereditary optic neuropathy in those genetically at risk, or in those at risk based on earlier involvement of one eye. However, some doctors recommend that their patients take vitamin C, vitamin E, coenzyme Q10, or other antioxidants, and that they avoid the use of tobacco or alcohol. Patients should ask their doctors about the use of vitamins. Avoiding toxin exposure and nutritional deficiency should prevent toxic or nutritional deficiency optic neuropathy.

Key Terms

Atrophy
A destruction or dying of cells, tissues, or organs.
Cerebellar
Involving the part of the brain (cerebellum), which controls walking, balance, and coordination.
Mitochondia
A structure in the cell responsible for producing energy. A defect in the DNA in the mitochondria is involved in Leber's optic neuropathy.
Neuritis
An inflammation of the nerves.
Neuropathy
A disturbance of the nerves, not caused by an inflammation. For example, the cause may be toxins, or unknown.

Further Reading

For Your Information

    Periodicals

  • Cullom, M.E., et al. "Leber's Hereditary Optic Neuropathy Masquerading as Tobacco-Alcohol Amblyopia." In Archives of Ophthalmology. 111(1993):1482-5.
  • Funakawa, I., et al. "Cerebellar Ataxia in Patients with Leber's Hereditary Optic Neuropathy." In Journal of Neurology. 242(1995):75-7.
  • Goldnick, K.C., and Schaible, E.R. "Folate-Responsive Optic Neuropathy." In Journal of Neuroophthalmology. 14 (1994):163-9.
  • Newman, N.J. "Optic Neuropathy." In Neurology 46 no. 2 (1996):315-22.

    Organizations

  • American Academy of Neurology. 1080 Montreal Ave., St. Paul, MN 55116. (612) 695-1940.
  • Prevent Blindness America. 500 East Remington Road, Schaumburg, IL 60173. (800) 331-2020. http://www.prevent-blindness.org.

Gale Encyclopedia of Medicine. Gale Research, 1999.

Return to Hereditary ataxia
Home Contact Resources Exchange Links ebay