Definition
Red blood cells have a normal life span of approximately 90-120 days, at which time the old cells are destroyed and replaced by the body's natural processes. Hemolytic anemia is a disorder in which the red blood cells are destroyed prematurely. The cells are broken down at a faster rate than the bone marrow can produce new cells. Hemoglobin, the component of red blood cells that carries oxygen, is released when these cells are destroyed.
Description
As a group, anemias (conditions in which the number of red blood cells or the amount of hemoglobin in them is below normal) are the most common blood disorders. Hemolytic anemias, which result from the increased destruction of red blood cells, are less common than anemias caused by excessive blood loss or by decreased hemoglobin or red cell production.
Since a number of factors can increase red blood cell destruction, hemolytic anemias are generally identified by the disorder that brings about the premature destruction. Those disorders are classified as either inherited or acquired. Inherited hemolytic anemias are caused by inborn defects in components of the red blood cells--the cell membrane, the enzymes, or the hemoglobin. Acquired hemolytic anemias are those that result from various other causes. With this type, red cells are produced normally, but are prematurely destroyed because of damage that occurs to them in the circulation.
Causes & symptoms
Inherited hemolytic anemias involve conditions that interfere with normal red blood cell production. Disorders that affect the red blood cell membrane include hereditary spherocytosis, in which the normally disk-shaped red cells become spherical, and hereditary elliptocytosis, in which the cells are oval, rather than disk-shaped. Other hereditary conditions that cause hemolytic anemia include disorders of the hemoglobin, such as sickle cell anemia and thalassemia, and red blood cell enzyme deficiencies, such as G6PD deficiency.
The causes of acquired hemolytic anemias vary, but the most common are responses to certain medications and infections. Medications may cause the body to develop antibodies that bind to the red blood cells and cause their destruction in the spleen. Immune hemolytic anemia most commonly involves antibodies that react against the red blood cells at body temperature (warm--antibody hemolytic anemia), which can cause premature destruction of the cells. About 20% of hemolytic anemias caused by warm antibodies come from diseases such as lymphocytic leukemia, 10% from an autoimmune disease, and others are drug-induced. Cold-antibody hemolytic anemia is a condition in which the antibodies react with the red blood cells at a temperature below that of normal body temperature. Red blood cells can also receive mechanical damage as they circulate through the blood vessels. Aneurysms, artificial heart valves, or very high blood pressure can cause the red cells to break up and release their contents. In addition, hemolytic anemia may be caused by a condition called hypersplenism, in which a large, overactive spleen rapidly destroys red blood cells.
Major symptoms of hemolytic anemias are similar to those for all anemias, including shortness of breath; noticeable increase in heart rate; especially with exertion; fatigue; pale appearance; and dark urine. A yellow tint, or jaundice, may be seen in the skin or eyes of hemolytic anemia patients. Examination may also show an enlarged spleen. A more emergent symptom of hemolytic anemia is pain in the upper abdomen. Severe anemia is indicated if there are signs of heart failure or an enlarged liver.
Diagnosis
In order to differentiate hemolytic anemia from others, physicians will examine the blood for the number of young red blood cells, since the number of young cells is increased in hemolytic anemia. The physician will also examine the abdominal area to check for spleen or liver enlargement. If the physician knows the duration of hemolysis, it may also help differentiate between types of anemia. There are a number of other indications that can be obtained from blood samples that will help a physician screen for hemolytic anemia. An antiglobulin (Coomb's) test may be performed as the initial screening exam after determining hemolysis. In the case of immune hemolytic anemia, a direct Coomb's test is almost always positive.
Treatment
Treatment will depend on the cause of the anemia, and may involve treatment of the underlying cause. If the hemolytic anemia was brought on by hereditary spherocytosis, the spleen may be removed. Corticosteroid medications, or adrenal steroids, may be effective, especially in hemolytic anemia due to antibodies. If the cause of the disorder is a medication, the medication should be stopped. When anemia is severe in conditions such as sickle cell anemia and thalassemia, blood transfusions may be indicated.
Prognosis
Hemolytic anemias are seldom fatal. However, if left untreated, hemolytic anemia can lead to heart failure or liver complications.
Prevention
Hemolytic anemia due to inherited disorders can not be prevented. Acquired hemolytic anemia may be prevented if the underlying disorder is managed properly.
Key Terms
- Antibody
- Antibodies are parts of the immune system which counteract or eliminate foreign substances or antigens.
- Erythrocyte
- The name for red blood cells or red blood corpuscles. These components of the blood are responsible for carrying oxygen to tissues and removing carbon dioxide from tissues.
- Hemolysis
- The process of breaking down of red blood cells. As the cells are destroyed, hemoglobin, the component of red blood cells which carries the oxygen, is liberated.
- Thalassemia
- One of a group of inherited blood disorders characterized by a defect in the metabolism of hemoglobin, or the portion of the red blood cells that transports oxygen throughout the blood stream.
Further Reading
For Your Information
Periodicals
- American Autoimmune Related Diseases Association, Inc. In. Focus: A quarterly newsletter of the AARDA. Detroit, MI. (313)371-8600. http://www.aarda.org.
Organizations
- The American Society of Hematology. 1200 19th Street NW, Suite 300, Washington, DC 20036-2422. (202)857-1118. http://www.hematology.org.
- National Heart, Lung and Blood Institute. Building 31, Room 4A21, Bethesda, MD 20892. (301)496-4236. http://www.nhlbi.nih.gov.
Other
- National Organization for Rare Disorders, Inc. website.http://www.pcnet.com/~orphan/.
Gale Encyclopedia of Medicine. Gale Research, 1999.