Find information on thousands of medical conditions and prescription drugs.

Hurler syndrome

Hurler syndrome, also known as mucopolysaccharidosis type I (MPS I) or "Hurler's disease", is a genetic disorder that results in the deficiency of alpha-L iduronidate, which is an enzyme that breaks down mucopolysaccharides. Without this enzyme, the buildup of heparan sulfate and dermatan sulfate occurs in the body (the heart, liver, brain etc.). Symptoms appear during childhood and early death can occur due to organ damage. more...

Home
Diseases
A
B
C
D
E
F
G
H
Hairy cell leukemia
Hallermann Streiff syndrome
Hallux valgus
Hantavirosis
Hantavirus pulmonary...
HARD syndrome
Harlequin type ichthyosis
Harpaxophobia
Hartnup disease
Hashimoto's thyroiditis
Hearing impairment
Hearing loss
Heart block
Heavy metal poisoning
Heliophobia
HELLP syndrome
Helminthiasis
Hemangioendothelioma
Hemangioma
Hemangiopericytoma
Hemifacial microsomia
Hemiplegia
Hemoglobinopathy
Hemoglobinuria
Hemolytic-uremic syndrome
Hemophilia A
Hemophobia
Hemorrhagic fever
Hemothorax
Hepatic encephalopathy
Hepatitis
Hepatitis A
Hepatitis B
Hepatitis C
Hepatitis D
Hepatoblastoma
Hepatocellular carcinoma
Hepatorenal syndrome
Hereditary amyloidosis
Hereditary angioedema
Hereditary ataxia
Hereditary ceroid...
Hereditary coproporphyria
Hereditary elliptocytosis
Hereditary fructose...
Hereditary hemochromatosis
Hereditary hemorrhagic...
Hereditary...
Hereditary spastic...
Hereditary spherocytosis
Hermansky-Pudlak syndrome
Hermaphroditism
Herpangina
Herpes zoster
Herpes zoster oticus
Herpetophobia
Heterophobia
Hiccups
Hidradenitis suppurativa
HIDS
Hip dysplasia
Hirschsprung's disease
Histoplasmosis
Hodgkin lymphoma
Hodgkin's disease
Hodophobia
Holocarboxylase...
Holoprosencephaly
Homocystinuria
Horner's syndrome
Horseshoe kidney
Howell-Evans syndrome
Human parvovirus B19...
Hunter syndrome
Huntington's disease
Hurler syndrome
Hutchinson Gilford...
Hutchinson-Gilford syndrome
Hydatidiform mole
Hydatidosis
Hydranencephaly
Hydrocephalus
Hydronephrosis
Hydrophobia
Hydrops fetalis
Hymenolepiasis
Hyperaldosteronism
Hyperammonemia
Hyperandrogenism
Hyperbilirubinemia
Hypercalcemia
Hypercholesterolemia
Hyperchylomicronemia
Hypereosinophilic syndrome
Hyperhidrosis
Hyperimmunoglobinemia D...
Hyperkalemia
Hyperkalemic periodic...
Hyperlipoproteinemia
Hyperlipoproteinemia type I
Hyperlipoproteinemia type II
Hyperlipoproteinemia type...
Hyperlipoproteinemia type IV
Hyperlipoproteinemia type V
Hyperlysinemia
Hyperparathyroidism
Hyperprolactinemia
Hyperreflexia
Hypertension
Hypertensive retinopathy
Hyperthermia
Hyperthyroidism
Hypertrophic cardiomyopathy
Hypoaldosteronism
Hypocalcemia
Hypochondrogenesis
Hypochondroplasia
Hypoglycemia
Hypogonadism
Hypokalemia
Hypokalemic periodic...
Hypoparathyroidism
Hypophosphatasia
Hypopituitarism
Hypoplastic left heart...
Hypoprothrombinemia
Hypothalamic dysfunction
Hypothermia
Hypothyroidism
Hypoxia
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Medicines

MPS I is divided into three subtypes based on severity of symptoms. All three types result from an absence of, or insufficient levels of, the enzyme alpha-L-iduronidase. Children born to an MPS I parent carry the defective gene. MPS I H or Hurler syndrome is the most severe of the MPS I subtypes. The other two types are MPS I S or Scheie syndrome and MPS I H-S or Hurler-Scheie syndrome

Features

The condition is marked by progressive deterioration, hepatosplenomegaly, dwarfism, gargoyle-like facies. There is a progressive mental retardation, with death occuring by the age of 10 years.

Developmental delay is evident by the end of the first year, and patients usually stop developing between ages 2 and 4. This is followed by progressive mental decline and loss of physical skills. Language may be limited due to hearing loss and an enlarged tongue. In time, the clear layers of the cornea become clouded and retinas may begin to degenerate. Carpal tunnel syndrome (or similar compression of nerves elsewhere in the body) and restricted joint movement are common.

Affected children may be quite large at birth and appear normal but may have inguinal (in the groin) or umbilical (where the umbilical cord passes through the abdomen) hernias. Growth in height may be faster than normal but begins to slow before the end of the first year and often ends around age 3. Many children develop a short body trunk and a maximum stature of less than 4 feet. Distinct facial features (including flat face, depressed nasal bridge, and bulging forehead) become more evident in the second year. By age 2, the ribs have widened and are oar-shaped. The liver, spleen and heart are often enlarged. Children may experience noisy breathing and recurring upper respiratory tract and ear infections. Feeding may be difficult for some children, and many experience periodic bowel problems. Children with Hurler syndrome often die before age 10 from obstructive airway disease, respiratory infections, or cardiac complications.

There is some clinical similarity with Hunter syndrome.

Diagnosis

Diagnosis often can be made through clinical examination and urine tests (excess mucopolysaccharides are excreted in the urine). Enzyme assays (testing a variety of cells or body fluids in culture for enzyme deficiency) are also used to provide definitive diagnosis of one of the mucopolysaccharidoses. Prenatal diagnosis using amniocentesis and chorionic villus sampling can verify if a fetus either carries a copy of the defective gene or is affected with the disorder. Genetic counseling can help parents who have a family history of the mucopolysaccharidoses determine if they are carrying the mutated gene that causes the disorders.

Read more at Wikipedia.org


[List your site here Free!]


MRI and MRS of Coffin-Lowry syndrome: A case report
From Neurological Research, 4/1/03 by Patlas, M

MRI and MRS were used to examine the brain and the spine of a Coffin-Lowry syndrome (CLS) patient. There were moderately enlarged lateral and third ventricles and subarachnoid space with prominent Virchow-Robin spaces. MRS of basal ganglia and periventricular white matter was normal. [Neurol Res 2003; 25: 285-286]

Keywords: Coffin-Lowry syndrome; hydrocephalus; Virchow-Robin spaces; MRI; MRS

INTRODUCTION Coffin ef al.1 in 1966 and Lowry ef al.2 in 1971 independently described patients with mental retardation and characteristic facial and skeletal features. The syndrome was mapped on the short arm of the X chromosome (Xp 22.2) by linkage analysis and mutations in the RSK-2 genes were recently identified3.

The syndrome is rare and besides the description of the phenotype some other clinical abnormalities were recently reported: 'cataplexy'4 and late onset sensorineural hearing loss5.

We report on the MRI and MR spectroscopy (MRS) findings in a patient who presented with gradual motor deterioration and drop episodes, which prompted our clinical and diagnostic reevaluation.

CASE REPORT

R.T., a ten-and-a-half-year old boy, was the product of a breech delivery at 37 weeks of gestation, with a birth weight of 215Og to nonconsanguinous parents. From early infancy he was severely hypotonie, had poor sucking and slow weight gain, recurrent upper respiratory tract infections. His face was dysmorphic, with large forehead, hypertelorism, down slanted eyes, wide mouth, thick lips, wide spaced and dysplastic teeth. The limbs were puffy, with lack of deep creases on palms and soles, hyperelastic joints and tapering fingers. The Coffin-Lowry syndrome (CLS) was initially suspected around the age of two years and Fragile X and later Wi I Harris's syndrome were ruled out by genetic studies. His developmental progress was very slow although both physical and occupational therapy were provided early. he started walking at four years of age and at about four and half years, started talking. Around six years of age he presented with a history of frequent falls and over the subsequent two years began walking with support and then stopped walking independently and reverted to crawling. Repeated EEC and video EEGs did not show epileptic activity and an early brain CT scan was reported as normal. Blood tests including complete blood count, electrolytes, muscle and liver enzymes, thyroid function tests were normal and eiectrophysiological studies including EMG and NCV were normal too. Initially the family refused to perform an MRI but finally consented due to the incessant falls and loss of independent ambulation.

MRI of the brain showed moderately enlarged lateral and third ventricles with a small corpus callosum (Figure 7), and enlarged subarachnoid space with prominent periventricular Virchow-Robin spaces (Figure 2). MRS of basal ganglia and periventricular white matter was normal (Figure 3). MRI of the spine revealed prominent scoliosis.

DISCUSSION

We found one previous single case report on the brain MRI finding of Coffin-Lowry syndrome6. Small perivascular focal areas of hypointensity in the white matter on Tl weighted images, dilatation of the lateral ventricles and hypoplasia of the splenium were noted.

Other lesions with predilection for the Virchow-Robin spaces include mucopolysaccharidoses (MPS), cryptococcus and sarcoidosis. Cryptococcus and sarcoidosis would be unlikely in infants and children, except for cryptococcus in immunosupressed patients. Prominent periventricular Virchow-Robin spaces in MPS corresponded pathologically to perivascular accumulation of glycosaminoglycans within foam cells in the Virchow-Robin spaces7. However, the facial features and other clinical signs of our patient were quite different from those of MPS patients. MRI of the brain in a Japanese CLS patient also revealed prominent perivascular spaces. The cause of the lesions in our patient and in the case reported by Kondoh ef a/.6 is not known.

The MRI findings in Coffin-Lowry syndrome are not specific. However, in cases with the appropriate clinical findings, the cerebral and spinal MRI findings with a normal cerebral MRS can strengthen the diagnostic specificity.

REFERENCES

1 Coffin GS, Siris E, Wegienka L. Mental retardation with osteocartilaginous anomalies. AmJ Dis Child 1966; 112: 205-213

2 Lowry B, Miller JR, Fraser FC. A new dominant gene mental retardation syndrome: Association with small stature, tapering fingers, characteristic faces and possible hydrocephalus. Am J Dis Child 1971; 121: 496-500

3 Trivier E, de Cesare D, Jacquot S, etal. Mutations in the kinase RSK-2 associated with Coffin Lowry syndrome. Nature 1996; 384: 567-570

4 Crow YJ, Zuberi SM, McWilliam R, et ai. 'Cataplexy' and muscle ultrasound abnormalities in Coffin Lowry syndrome. J Med Genet 1998; 35: 94-98

5 Rosanowski F, Hoppe U, Proschel U, Eysholdt U. Late onset sensorineural hearing loss in Coffin Lowry syndrome. Ostorhinolaryngol Relat Spec 1998; 60: 224-226

6 Kondoh T, Matsumoto T, Ochi M, Sukegawa K, Tsujl Y. New radiological finding by magnetic resonance imaging examination of the brain in Coffin Lowry syndrome. J Hum Genet 1998; 43: 59-61

7 Johnson MA, Desai S, Hugh-Jones K, et al. Magnetic resonance imaging of the brain in Hurler syndrome. AJNR 1984; 5: 816-819

M. Patlas*, A. Joseph[dagger], J.E. Cohen[double dagger] and J.M. Gomori[double dagger]

* Departinent of Radiology, Shaare Zedek Medical Center, Jerusalem

[double dagger] Pediatric Neurology Unit, Ministry of Health, Jerusalem

[double dagger] Department of Radiology, Hadassah University Hospital, Jerusalem, Israel

Correspondence and reprint requests to: J.M. Comori, Department of Radiology, Hadassah University Hospital, PO Box 12000, Jerusalem 91120, Israel, [gomori@md2.huji.ac.il] Accepted for publication November 2002.

Copyright Forefront Publishing Group Apr 2003
Provided by ProQuest Information and Learning Company. All rights Reserved

Return to Hurler syndrome
Home Contact Resources Exchange Links ebay