Find information on thousands of medical conditions and prescription drugs.

Hydrops fetalis

Hydrops fetalis is blood condition in the fetus characterized by an edema in the fetal subcutaneous tissue, sometimes leading to spontaneous abortion. more...

Home
Diseases
A
B
C
D
E
F
G
H
Hairy cell leukemia
Hallermann Streiff syndrome
Hallux valgus
Hantavirosis
Hantavirus pulmonary...
HARD syndrome
Harlequin type ichthyosis
Harpaxophobia
Hartnup disease
Hashimoto's thyroiditis
Hearing impairment
Hearing loss
Heart block
Heavy metal poisoning
Heliophobia
HELLP syndrome
Helminthiasis
Hemangioendothelioma
Hemangioma
Hemangiopericytoma
Hemifacial microsomia
Hemiplegia
Hemoglobinopathy
Hemoglobinuria
Hemolytic-uremic syndrome
Hemophilia A
Hemophobia
Hemorrhagic fever
Hemothorax
Hepatic encephalopathy
Hepatitis
Hepatitis A
Hepatitis B
Hepatitis C
Hepatitis D
Hepatoblastoma
Hepatocellular carcinoma
Hepatorenal syndrome
Hereditary amyloidosis
Hereditary angioedema
Hereditary ataxia
Hereditary ceroid...
Hereditary coproporphyria
Hereditary elliptocytosis
Hereditary fructose...
Hereditary hemochromatosis
Hereditary hemorrhagic...
Hereditary...
Hereditary spastic...
Hereditary spherocytosis
Hermansky-Pudlak syndrome
Hermaphroditism
Herpangina
Herpes zoster
Herpes zoster oticus
Herpetophobia
Heterophobia
Hiccups
Hidradenitis suppurativa
HIDS
Hip dysplasia
Hirschsprung's disease
Histoplasmosis
Hodgkin lymphoma
Hodgkin's disease
Hodophobia
Holocarboxylase...
Holoprosencephaly
Homocystinuria
Horner's syndrome
Horseshoe kidney
Howell-Evans syndrome
Human parvovirus B19...
Hunter syndrome
Huntington's disease
Hurler syndrome
Hutchinson Gilford...
Hutchinson-Gilford syndrome
Hydatidiform mole
Hydatidosis
Hydranencephaly
Hydrocephalus
Hydronephrosis
Hydrophobia
Hydrops fetalis
Hymenolepiasis
Hyperaldosteronism
Hyperammonemia
Hyperandrogenism
Hyperbilirubinemia
Hypercalcemia
Hypercholesterolemia
Hyperchylomicronemia
Hypereosinophilic syndrome
Hyperhidrosis
Hyperimmunoglobinemia D...
Hyperkalemia
Hyperkalemic periodic...
Hyperlipoproteinemia
Hyperlipoproteinemia type I
Hyperlipoproteinemia type II
Hyperlipoproteinemia type...
Hyperlipoproteinemia type IV
Hyperlipoproteinemia type V
Hyperlysinemia
Hyperparathyroidism
Hyperprolactinemia
Hyperreflexia
Hypertension
Hypertensive retinopathy
Hyperthermia
Hyperthyroidism
Hypertrophic cardiomyopathy
Hypoaldosteronism
Hypocalcemia
Hypochondrogenesis
Hypochondroplasia
Hypoglycemia
Hypogonadism
Hypokalemia
Hypokalemic periodic...
Hypoparathyroidism
Hypophosphatasia
Hypopituitarism
Hypoplastic left heart...
Hypoprothrombinemia
Hypothalamic dysfunction
Hypothermia
Hypothyroidism
Hypoxia
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Medicines

Classification and Causes

Hydrops fetalis is presented in two forms: immune or non-immune. Cases of immune hydrops fetalis are relatively rare today, due to treatments developed in the 1970s.

The non-immune form of hydrops fetalis can be caused by any number of disorders. One notable cause is a deficiency of the enzyme beta-glucuronidase. This enzyme deficiency is the cause of the lysosomal storage disease Mucopolysaccharidosis Type VII. Another cause is Parvovirus B19 infection of the pregnant woman.

Diagnosis and Treatment

Hydrops fetalis can be diagnosed by ultrasound scans and treated by blood transfusions to the fetus while still in the womb. Prevention of maternal alloimmunization to fetal red cell antigens is achived by administration of anti-D IgG antiserum to D-negative mothers during the delivery.

Read more at Wikipedia.org


[List your site here Free!]


Erythroblastosis fetalis
From Gale Encyclopedia of Medicine, 4/6/01 by Julia Barrett

Definition

Erythroblastosis fetalis refers to two potentially disabling or fatal blood disorders in infants: Rh incompatibility disease and ABO incompatibility disease. Either disease may be apparent before birth and can cause fetal death in some cases. The disorder is caused by incompatibility between a mother's blood and her unborn baby's blood. Because of the incompatibility, the mother's immune system may launch an immune response against the baby's red blood cells. As a result, the baby's blood cells are destroyed, and the baby may suffer severe anemia (deficiency in red blood cells), brain damage, or death.

Description

Red blood cells carry several types of proteins, called antigens, on their surfaces. The A, B, and O antigens are used to classify a person's blood as type A, B, AB, or O. Each parent passes one A, B, or O antigen gene to their child. How the genes are paired determines the person's blood type.

A person who inherits an A antigen gene from each parent has type A blood; receiving two B antigen genes corresponds with type B blood; and inheriting A and B antigen genes means a person has type AB blood. If the O antigen gene is inherited from both parents, the child has type O blood; however, the pairing of A and O antigen genes corresponds with type A blood; and if the B antigen gene is matched with the O antigen gene, the person has type B blood.

Another red blood cell antigen, called the Rh factor, also plays a role in describing a person's blood type. A person with at least one copy of the gene for the Rh factor has Rh-positive blood; if no copies are inherited, the person's blood type is Rh-negative. In blood typing, the presence of A, B, and O antigens, plus the presence or absence of the Rh-factor, determine a person's specific blood type, such as A-positive, B-negative, and so on.

A person's blood type has no effect on health. However, an individual's immune system considers only that person's specific blood type, or a close match, acceptable. If a radically different blood type is introduced into the bloodstream, the immune system produces antibodies, proteins that specifically attack and destroy any cell carrying the foreign antigen.

Determining a person's blood type is very important if she becomes pregnant. Blood cells from the unborn baby (fetal red blood cells) can cross over into the mother's bloodstream, especially at delivery. If the mother and her baby have compatible blood types, the crossover does not present any danger. However, if the blood types are incompatible, the mother's immune system manufactures antibodies against the baby's blood.

Usually, this incompatibility is not a factor in a first pregnancy, because few fetal blood cells reach the mother's bloodstream until delivery. The antibodies that form after delivery cannot affect the first child. In later pregnancies, fetuses and babies may be in grave danger. The danger arises from the possibility that the mother's antibodies will attack the fetal red blood cells. If this happens, the fetus or baby can suffer severe health effects and may die.

There are two types of incompatibility diseases: Rh incompatibility disease and ABO incompatibility disease. Both diseases have similar symptoms, but Rh disease is much more severe, because anti-Rh antibodies cross over the placenta more readily than anti-A or anti-B antibodies. (The immune system does not form antibodies against the O antigen.) Therefore, a greater percentage of the baby's blood cells are destroyed by Rh disease.

Both incompatibility diseases are uncommon in the United States due to medical advances over the last 50 years. For example, prior to 1946 (when newborn blood transfusions were introduced) 20,000 babies were affected by Rh disease yearly. Further advances, such as suppressing the mother's antibody response, have reduced the incidence of Rh disease to approximately 4,000 cases per year.

Rh disease only occurs if a mother is Rh-negative and her baby is Rh-positive. For this situation to occur, the baby must inherit the Rh factor gene from the father. Most people are Rh-positive. Only 15% of the white population is Rh-negative, compared to 5-7% of the black population and virtually none of Asian populations.

ABO incompatibility disease is almost always limited to babies with A or B antigens whose mothers have type O blood. Approximately one third of these babies show evidence of the mother's antibodies in their bloodstream, but only a small percentage develop symptoms of ABO incompatibility disease.

Cause & symptoms

Rh disease and ABO incompatibility disease are caused when a mother's immune system produces antibodies against the red blood cells of her unborn child. The antibodies cause the baby's red blood cells to be destroyed and the baby develops anemia. The baby's body tries to compensate for the anemia by releasing immature red blood cells, called erythroblasts, from the bone marrow.

The overproduction of erythroblasts can cause the liver and spleen to become enlarged, potentially causing liver damage or a ruptured spleen. The emphasis on erythroblast production is at the cost of producing other types of blood cells, such as platelets and other factors important for blood clotting. Since the blood lacks clotting factors, excessive bleeding can be a complication.

The destroyed red blood cells release the blood's red pigment (hemoglobin) which degrades into a yellow substance called bilirubin. Bilirubin is normally produced as red blood cells die, but the body is only equipped to handle a certain low level of bilirubin in the bloodstream at one time. Erythroblastosis fetalis overwhelms the removal system, and high levels of bilirubin accumulate, causing hyperbilirubinemia, a condition in which the baby becomes jaundiced. The jaundice is apparent from the yellowish tone of the baby's eyes and skin. If hyperbilirubinemia cannot be controlled, the baby develops kernicterus. The term kernicterus means that bilirubin is being deposited in the brain, possibly causing permanent damage.

Other symptoms that may be present include high levels of insulin and low blood sugar, as well as a condition called hydrops fetalis. Hydrops fetalis is characterized by an accumulation of fluids within the baby's body, giving it a swollen appearance. This fluid accumulation inhibits normal breathing, because the lungs cannot expand fully and may contain fluid. If this condition continues for an extended period, it can interfere with lung growth. Hydrops fetalis and anemia can also contribute to heart problems.

Diagnosis

Erythroblastosis fetalis can be predicted before birth by determining the mother's blood type. If she is Rh-negative, the father's blood is tested to determine whether he is Rh-positive. If the father is Rh-positive, the mother's blood will be checked for antibodies against the Rh factor. A test that demonstrates no antibodies is repeated at week 26 or 27 of the pregnancy. If antibodies are present, treatment is begun.

In cases in which incompatibility is not identified before birth, the baby suffers recognizable characteristic symptoms such as anemia, hyperbilirubinemia, and hydrops fetalis. The blood incompatibility is uncovered through blood tests such as the Coombs test, which measures the level of maternal antibodies attached to the baby's red blood cells. Other blood tests reveal anemia, abnormal blood counts, and high levels of bilirubin.

Treatment

When a mother has antibodies against her unborn infant's blood, the pregnancy is watched very carefully. The antibodies are monitored and if levels increase, amniocentesis, fetal umbilical cord blood sampling, and ultrasound are used to assess any effects on the baby. Trouble is indicated by high levels of bilirubin in the amniotic fluid or baby's blood, or if the ultrasound reveals hydrops fetalis. If the baby is in danger, and the pregnancy is at least 32-34 weeks along, labor is induced. Under 32 weeks, the baby is given blood transfusions while still in the mother's uterus.

There are two techniques that are used to deliver a blood transfusion to a baby before birth. In the first, a needle is inserted through the mother's abdomen and uterus, and into the baby's abdomen. Red blood cells injected into the baby's abdominal cavity are absorbed into its bloodstream. In early pregnancy or if the baby's bilirubin levels are gravely high, cordocentesis is performed. This procedure involves sliding a very fine needle through the mother's abdomen and, guided by ultrasound, into a vein in the umbilical cord to inject red blood cells directly into the baby's bloodstream.

After birth, the severity of the baby's symptoms are assessed. One or more transfusions may be necessary to treat anemia, hyperbilirubinemia, and bleeding. Hyperbilirubinemia is also treated with phototherapy, a treatment in which the baby is placed under a special light. This light causes changes in how the bilirubin molecule is shaped, which makes it easier to excrete. The baby may also receive oxygen and intravenous fluids containing electrolytes or drugs to treat other symptoms.

Prognosis

In many cases of blood type incompatibility, the symptoms of erythroblastosis fetalis are prevented with careful monitoring and blood type screening. Treatment of minor symptoms is typically successful and the baby will not suffer long-term problems.

Nevertheless, erythroblastosis is a very serious condition for approximately 4,000 babies annually. In about 15% of cases, the baby is severely affected and dies before birth. Babies who survive pregnancy may develop kernicterus, which can lead to deafness, speech problems, cerebral palsy, or mental retardation. Extended hydrops fetalis can inhibit lung growth and contribute to heart failure. These serious complications are life threatening, but with good medical treatment, the fatality rate is very low. According to the U.S. Centers for Disease Control and Prevention, there were 21 infant deaths in the United States during 1996 that were attributable to hemolytic disease (erythroblastosis fetalis) and jaundice.

Prevention

With any pregnancy, whether it results in a live birth, miscarriage, stillbirth, or abortion, blood typing is a universal precaution against blood compatibility disease. Blood types cannot be changed, but adequate forewarning allows precautions and treatments that limit the danger to unborn babies.

If an Rh-negative woman gives birth to an Rh-positive baby, she is given an injection of immunoglobulin G, a type of antibody protein, within 72 hours of the birth. The immunoglobulin destroys any fetal blood cells in her bloodstream before her immune system can react to them. In cases where this precaution is not taken, antibodies are created and future pregnancies may be complicated.

Key Terms

Amniocentesis
A procedure in which a needle is inserted through a pregnant woman's abdomen and into her uterus to withdraw a small sample of amniotic fluid. The amniotic fluid can be examined for sign of disease or other problems afflicting the fetus.
Amniotic fluid
The fluid that surrounds a fetus in the uterus.
Anemia
A condition in which there is an abnormally low number of red blood cells in the bloodstream. Major symptoms are paleness, shortness of breath, unusually fast or strong heart beats, and tiredness.
Antibody
A protein molecule produced by the immune system in response to a protein that is not recognized as belonging in the body.
Antigen
A protein that can elicit an immune response in the form of antibody formation. With regard to red blood cells, the major antigens are A, B, O, and the Rh factor.
Bilirubin
A yellow-colored end-product of hemoglobin degradation. It is normally present at very low levels in the bloodstream; at high levels, it produces jaundice.
Cordocentesis
A procedure for delivering a blood transfusion to a fetus. It involves a fine needle being threaded through a pregnant woman's abdomen and into the umbilical cord with the aid of ultrasound imaging.

Hemoglobin
A molecule in red blood cells that transports oxygen and gives the cells their characteristic color.
Hydrops fetalis
A condition in which a fetus or newborn baby accumulates fluids, causing swollen arms and legs and impaired breathing.
Hyperbilirubinemia
A condition in which bilirubin accumulates to abnormally high levels in the bloodstream
Placenta
A protective membrane that surrounds and protects the fetus during pregnancy.
Platelet
A blood factor that is important in forming blood clots.
Rh factor
An antigen that is found on the red blood cells of most people. If it is present, the blood type is referred to as Rh-positive; if absent, the blood type is Rh-negative.

Further Reading

For Your Information

    Books

  • Phibbs, Roderic H. "Hemolytic Disease of the Newborn (Erythroblastosis Fetalis)." In Rudolph's Pediatrics, edited by Abraham M. Rudolph, et. al. Stamford, CT: Appleton & Lange, 1996.

    Periodicals

  • Bowman, John. "The Management of Hemolytic Disease in the Fetus and Newborn." Seminars in Perinatology, 21 (1)(February 1997): 39.
  • Peterec, Steven M. "Management of Neonatal Rh Disease." Clinics in Perinatology, 22 (3)(September 1995): 561.

Gale Encyclopedia of Medicine. Gale Research, 1999.

Return to Hydrops fetalis
Home Contact Resources Exchange Links ebay