Find information on thousands of medical conditions and prescription drugs.

Hypokalemia

Hypokalemia is a potentially fatal condition in which the body fails to retain sufficient potassium to maintain health. The condition is also known as potassium deficiency. The prefix hypo- means low (contrast with hyper-, meaning high). The middle kal refers to kalium, which is Latin for potassium. The end portion of the word, -emia, means 'in the blood' (note, however, that hypokalemia is usually indicative of a systemic potassium deficit). more...

Home
Diseases
A
B
C
D
E
F
G
H
Hairy cell leukemia
Hallermann Streiff syndrome
Hallux valgus
Hantavirosis
Hantavirus pulmonary...
HARD syndrome
Harlequin type ichthyosis
Harpaxophobia
Hartnup disease
Hashimoto's thyroiditis
Hearing impairment
Hearing loss
Heart block
Heavy metal poisoning
Heliophobia
HELLP syndrome
Helminthiasis
Hemangioendothelioma
Hemangioma
Hemangiopericytoma
Hemifacial microsomia
Hemiplegia
Hemoglobinopathy
Hemoglobinuria
Hemolytic-uremic syndrome
Hemophilia A
Hemophobia
Hemorrhagic fever
Hemothorax
Hepatic encephalopathy
Hepatitis
Hepatitis A
Hepatitis B
Hepatitis C
Hepatitis D
Hepatoblastoma
Hepatocellular carcinoma
Hepatorenal syndrome
Hereditary amyloidosis
Hereditary angioedema
Hereditary ataxia
Hereditary ceroid...
Hereditary coproporphyria
Hereditary elliptocytosis
Hereditary fructose...
Hereditary hemochromatosis
Hereditary hemorrhagic...
Hereditary...
Hereditary spastic...
Hereditary spherocytosis
Hermansky-Pudlak syndrome
Hermaphroditism
Herpangina
Herpes zoster
Herpes zoster oticus
Herpetophobia
Heterophobia
Hiccups
Hidradenitis suppurativa
HIDS
Hip dysplasia
Hirschsprung's disease
Histoplasmosis
Hodgkin lymphoma
Hodgkin's disease
Hodophobia
Holocarboxylase...
Holoprosencephaly
Homocystinuria
Horner's syndrome
Horseshoe kidney
Howell-Evans syndrome
Human parvovirus B19...
Hunter syndrome
Huntington's disease
Hurler syndrome
Hutchinson Gilford...
Hutchinson-Gilford syndrome
Hydatidiform mole
Hydatidosis
Hydranencephaly
Hydrocephalus
Hydronephrosis
Hydrophobia
Hydrops fetalis
Hymenolepiasis
Hyperaldosteronism
Hyperammonemia
Hyperandrogenism
Hyperbilirubinemia
Hypercalcemia
Hypercholesterolemia
Hyperchylomicronemia
Hypereosinophilic syndrome
Hyperhidrosis
Hyperimmunoglobinemia D...
Hyperkalemia
Hyperkalemic periodic...
Hyperlipoproteinemia
Hyperlipoproteinemia type I
Hyperlipoproteinemia type II
Hyperlipoproteinemia type...
Hyperlipoproteinemia type IV
Hyperlipoproteinemia type V
Hyperlysinemia
Hyperparathyroidism
Hyperprolactinemia
Hyperreflexia
Hypertension
Hypertensive retinopathy
Hyperthermia
Hyperthyroidism
Hypertrophic cardiomyopathy
Hypoaldosteronism
Hypocalcemia
Hypochondrogenesis
Hypochondroplasia
Hypoglycemia
Hypogonadism
Hypokalemia
Hypokalemic periodic...
Hypoparathyroidism
Hypophosphatasia
Hypopituitarism
Hypoplastic left heart...
Hypoprothrombinemia
Hypothalamic dysfunction
Hypothermia
Hypothyroidism
Hypoxia
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Medicines

Signs and symptoms

There may be no symptoms at all but severe hypokalemia may cause:

  • Muscle weakness
  • Disturbed heart rhythm (arrhythmias), leading to ectopic beats
  • Serious arrhythmias
  • Increased risk of hyponatraemia with resultant confusion and seizures

Causes

Hypokalemia can result from a variety of medical conditions:

  • Perhaps most obviously, insufficient consumption of potassium (that is, a low-potassium diet) can result in the condition. More commonly, however, hypokalemia occurs due to excessive loss of potassium, often associated with excess water loss, which "flushes" potassium out of the body. Typically, this is a consequence of vomiting and diarrhea.
  • Hypomagnesemia can also cause hypokalemia. This is realized as a possibility when hypokalemia persists despite potassium supplementation.
  • Certain medications can also accelerate the removal of potassium from the body, including loop diuretics, such as furosemide or bumetanide, as well as various laxatives. The antifungal amphotericin B is also associated with hypokalemia. Often doctors and pharmacists will suggest changes in their patients' diets to compensate for the effects of medication. For instance, recommending that a patient eat a (potassium-rich) banana daily; sometimes, doctors will co-prescribe a potassium supplement when a potassium-depleting drug is prescribed.

Pathophysiology

Potassium is essential for many body functions, including muscle and nerve activity. Potassium is the principal intracellular cation, with a concentration of about 145 mEq/L, as compared with a normal value of about 4 mEq/L in extracellular fluid, including blood. More than 98% of the body's potassium is intracellular; measuring it from a blood sample is relatively insensitive, with small fluctuations in the blood corresponding to very large changes in the total bodily reservoir of potassium.

The osmotic gradient of potassium between intracellular and extracellular space is essential for nerve function; in particular, potassium is needed to repolarize the cell membrane to a resting state after an action potential has passed. Decreased potassium levels in the extracellular will cause hyperpolarization of the resting membrane potential. As a result, a greater than normal stimulus is required for depolarization of the membrane in order to initiate an action potential.

Potassium is also essential to the normal muscular function, in both voluntary muscle (e.g. the arms and hands) and involuntary muscle (e.g. the heart and intestines). Severe abnormalities in potassium levels can seriously disrupt cardiac function, even to the point of causing cardiac arrest and death.

Read more at Wikipedia.org


[List your site here Free!]


Diuretic-induced hypokalemia and the use of salt substitutes
From American Family Physician, 9/1/90

Diuretic-Induced Hypokalemia and the Use of Salt Substitutes Hypokalemia in association with diuretic therapy is common. The potassium supplements frequently used to correct hypokalemia are costly and may cause side effects. One possible alternative to potassium supplements is the use of salt substitutes. Salt substitutes cost one-tenth as much as potassium supplements and can provide equivalent amounts of pottasium. Hueston conducted a clinical trial of the effectiveness, safety and patient acceptance of salt substitutes.

Ten patients with controlled hypertension who were taking a prescription potassium replacement for diuretic-induced hypokalemia agreed to use a salt substitute instead of their usual potassium supplement for a six-week period. Serum potassium levels were monitored every two weeks. At the conclusion of the trial, a questionnaire was completed by the patients to assess side effects and patient satisfaction.

The salt substitutes was very effective in maintaining potassium levels in the normal range. A few side effects were reported, but none was severe enough to warrant discontinuation. Patient satisfaction with the salt substitutes was low because of its taste. Eight of the ten patients discontinued using the salt substitutes and returned to their potassium supplement regimens, despite the higher cost. One patient preferred the salt substitute, and one patient chose to continue using the salt substitute because of its low cost. The two patients who continued to use the salt substitute reported no side effects at one-year follow-up.

The author believes that salt substitutes are safe, effective and economical alternatives to potassium supllements. However, poor patient acceptance because of the taste was a limiting factor in this series of patients. (Journal of Family, Practice, December 1989, vol. 29, p. 623.)

COPYRIGHT 1990 American Academy of Family Physicians
COPYRIGHT 2004 Gale Group

Return to Hypokalemia
Home Contact Resources Exchange Links ebay