Find information on thousands of medical conditions and prescription drugs.

Hypokalemic periodic paralysis

Hypokalemic periodic paralysis is characterized by a fall in potassium levels in the blood. In individuals with this mutation attacks often begin in adolescence and are triggered by strenuous exercise or high carbohydrate meals. Weakness may be mild and limited to certain muscle groups, or more severe and affect the arms and legs. Attacks may last for a few hours or persist for several days. Some patients may develop chronic muscle weakness later in life. more...

Home
Diseases
A
B
C
D
E
F
G
H
Hairy cell leukemia
Hallermann Streiff syndrome
Hallux valgus
Hantavirosis
Hantavirus pulmonary...
HARD syndrome
Harlequin type ichthyosis
Harpaxophobia
Hartnup disease
Hashimoto's thyroiditis
Hearing impairment
Hearing loss
Heart block
Heavy metal poisoning
Heliophobia
HELLP syndrome
Helminthiasis
Hemangioendothelioma
Hemangioma
Hemangiopericytoma
Hemifacial microsomia
Hemiplegia
Hemoglobinopathy
Hemoglobinuria
Hemolytic-uremic syndrome
Hemophilia A
Hemophobia
Hemorrhagic fever
Hemothorax
Hepatic encephalopathy
Hepatitis
Hepatitis A
Hepatitis B
Hepatitis C
Hepatitis D
Hepatoblastoma
Hepatocellular carcinoma
Hepatorenal syndrome
Hereditary amyloidosis
Hereditary angioedema
Hereditary ataxia
Hereditary ceroid...
Hereditary coproporphyria
Hereditary elliptocytosis
Hereditary fructose...
Hereditary hemochromatosis
Hereditary hemorrhagic...
Hereditary...
Hereditary spastic...
Hereditary spherocytosis
Hermansky-Pudlak syndrome
Hermaphroditism
Herpangina
Herpes zoster
Herpes zoster oticus
Herpetophobia
Heterophobia
Hiccups
Hidradenitis suppurativa
HIDS
Hip dysplasia
Hirschsprung's disease
Histoplasmosis
Hodgkin lymphoma
Hodgkin's disease
Hodophobia
Holocarboxylase...
Holoprosencephaly
Homocystinuria
Horner's syndrome
Horseshoe kidney
Howell-Evans syndrome
Human parvovirus B19...
Hunter syndrome
Huntington's disease
Hurler syndrome
Hutchinson Gilford...
Hutchinson-Gilford syndrome
Hydatidiform mole
Hydatidosis
Hydranencephaly
Hydrocephalus
Hydronephrosis
Hydrophobia
Hydrops fetalis
Hymenolepiasis
Hyperaldosteronism
Hyperammonemia
Hyperandrogenism
Hyperbilirubinemia
Hypercalcemia
Hypercholesterolemia
Hyperchylomicronemia
Hypereosinophilic syndrome
Hyperhidrosis
Hyperimmunoglobinemia D...
Hyperkalemia
Hyperkalemic periodic...
Hyperlipoproteinemia
Hyperlipoproteinemia type I
Hyperlipoproteinemia type II
Hyperlipoproteinemia type...
Hyperlipoproteinemia type IV
Hyperlipoproteinemia type V
Hyperlysinemia
Hyperparathyroidism
Hyperprolactinemia
Hyperreflexia
Hypertension
Hypertensive retinopathy
Hyperthermia
Hyperthyroidism
Hypertrophic cardiomyopathy
Hypoaldosteronism
Hypocalcemia
Hypochondrogenesis
Hypochondroplasia
Hypoglycemia
Hypogonadism
Hypokalemia
Hypokalemic periodic...
Hypoparathyroidism
Hypophosphatasia
Hypopituitarism
Hypoplastic left heart...
Hypoprothrombinemia
Hypothalamic dysfunction
Hypothermia
Hypothyroidism
Hypoxia
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Medicines

Treatment

Treatment of the periodic paralyses focuses on preventing further attacks and relieving acute symptoms. Avoiding carbohydrate-rich meals and strenuous exercise, and taking acetazolamide daily may prevent hypokalemic attacks. Attacks can be managed by drinking a potassium chloride oral solution.

Prognosis

The prognosis for periodic paralysis varies. Chronic attacks may result in progressive weakness that persists between attacks. Some cases respond well to treatment, which can prevent or reverse progressive muscle weakness

Read more at Wikipedia.org


[List your site here Free!]


Residue-specific effects on slow inactivation at V787 in D2-S6 of Na(v)1.4 sodium channels
From Biophysical Journal, 10/1/01 by O'Reilly, John P

ABSTRACT Slow inactivation in voltage-gated sodium channels (NaChs) occurs in response to depolarizations of seconds to minutes and is thought to play an important role in regulating membrane excitability and action potential firing patterns. However, the molecular mechanisms of slow inactivation are not well understood. To test the hypothesis that transmembrane segment 6 of domain 2 (D2-S6) plays a role in NaCh slow inactivation, we substituted different amino acids at position V787 (valine) in D2-S6 of rat skeletal muscle NaCh mu1 (Na^sub v^1.4). Whole-cell recordings from transiently expressed NaChs in HEK cells were used to study and compare slow inactivation phenotypes between mutants and wild type. V787K (lysine substitution) showed a marked enhancement of slow inactivation. V787K enters the slow-inactivated state ==100x faster than wild type (tau^sub 1^ == 30 ms vs. ==3 s), and occurs at much more hyperpolarized potentials than wild type (V^sub 1/2^ of s^sub inf^ curve == -- 130 mV vs.== -75 mV). V787C (cysteine substitution) showed a resistance to slow inactivation, i.e., opposite to that of V787K. Entry into the slow inactivation state in V787C was slower (tau^sub 1^ == 5 s), less complete, and less voltage-dependent (V^sub 1/2 of s^sub inf^ curve == -50 mV) than in wild type. Application of the cysteine modification agent methanethiosulfonate ethylammonium (MTSEA) to V787C demonstrated that the 787 position undergoes a relative change in molecular conformation that is associated with the slow inactivation state. Our results suggest that the V787 position in Na^sub v^1.4 plays an important role in slow inactivation gating and that molecular rearrangement occurs at or near residue V787 in D2-S6 during NaCh slow inactivation.

REFERENCES

Akabas, M. H., D. A. Stauffer, M. Xu, and A. Karlin. 1992. Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science. 258:307-310.

Aldrich, R. W., D. P. Corey, and C. F. Stevens. 1983. A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature. 306:436-441.

Armstrong, C. M., F. Bezanilla, and E. Rojas. 1973. Destruction of sodium conductance inactivation in squid axons perfused with pronase. J. Gen. Physiol. 62:375-391.

Bendahhou, S., T. R. Cummins, A. F. Hahn, S. Langlois, S. G. Waxman, and L. J. Ptacek. 2000. A double mutation in families with periodic paralysis defines new aspects of sodium channel slow inactivation. J. Clin. Invest. 106:431-438.

Cannon, S. C., and S. M. Strittmatter. 1993. Functional expression of sodium channel mutations identified in families with periodic paralysis. Neuron. 10:317-326.

Cota, G., and C. M. Armstrong. 1989. Sodium channel gating in clonal pituitary cells. The inactivation step is not voltage dependent. J. Gen. Physiol, 94:213-232.

Cummins, T. R., S. D. Dib-Hajj, J. A. Black, A. N. Akopian, J. N. Wood, and S. G. Waxman. 1999. A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J. Neurosci. 19:RC43.

Cummins, T. R., and F. J. Sigworth. 1996. Impaired slow inactivation in mutant sodium channels. Biophys. J. 71:227-236.

Featherstone, D. E., J. E. Richmond, and P. C. Ruben. 1996. Interaction between fast and slow inactivation in Skm sodium channels. Biophys. J. 71:3098-3109.

Gellens, M. E., A. L. J. George, L.-Q. Chen, M. Chahine, R. Horn, R. L. Barchi, and R. G. Kallen. 1992. Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltagedependent sodium channel. Proc. Natl. Acad. Sci. U.S.A. 89:554-558.

Graham, F. L., and A. J. Eb. 1973. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 52:456-467. Hamill, 0. P., A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth. 1981.

Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391:85-100.

Hayward, L. J., R. H. J. Brown, and S. C. Cannon. 1997. Slow inactivation differs among mutant Na channels associated with myotonia and periodic paralysis. Biophys. J. 72:1204-1219.

Hayward, L. J., G. M. Sandoval, and S. C. Cannon. 1999. Defective slow inactivation of sodium channels contributes to familial periodic paralysis. Neurology. 52:1447-1453.

Heinemann, S. H., H. Terlau, W. Stuhmer, K. Imoto, and S. Numa. 1992. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature. 356:441-443.

Hille, B. 1989. The Sharpey-Schafer lecture. Ionic channels: evolutionary origins and modern roles. Q. J. Exp. Physiol. 74:785-804.

Hille, B. 1992. Ionic Channels of Excitable Membranes. Sinauer Associates, Sunderland, MA.

Hodgkin, A. L., and A. E. Huxley. 1952:A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Land.). 117:500-544.

Holmgren, M., Y. Liu, Y. Xu, and G. Yellen. 1996. On the use of thiol-modifying agents to determine channel topology. Neuropharmacology. 35:797-804.

Holmgren, M., K. S. Shin, and G. Yellen. 1998. The activation gate of a voltage-gated K+ channel can be trapped in the open state by an intersubunit metal bridge. Neuron. 21:617-621.

Khodorov, B. 1. 1985. Batrachotoxin as a tool to study voltage-sensitive sodium channels of excitable membranes. Prog. Biophys. Mol. Biol. 45:57-148.

Lipkind, G. M., and H. A. Fozzard. 2000. KcsA crystal structure as framework for a molecular model of the Na(+) channel pore. Biochemistry. 39:8161-8170.

McPhee, J. C., D. S. Ragsdale, T. Scheuer, and W. A. Catterall. 1998. A critical role for the S4-SS intracellular loop in domain IV of the sodium channel a-subunit in fast inactivation. J. Biol. Chem. 273:1121-1129.

Noda, M., T. Ikeda, T. Kayano, H. Suzuki, H. Takeshima, M. Kurasaki, H. Takahashi, and S. Numa. 1986. Existence of distinct sodium channel messenger RNAs in rat brain. Nature. 320:188-192.

Noda, M., S. Shimizu, T. Tanabe, T. Takai, T. Kayano, T. Ikeda, H. Takahashi, H. Nakayama, Y. Kanaoka, and N. Minamino. 1984. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature. 312:121-127.

O'Leary, M. E. 1998. Characterization of the isoform-specific differences in the gating of neuronal and muscle sodium channels. Can. J. Physiol. Pharmacol. 76:1041-1050.

O'Reilly, J. P., S.-Y. Wang, R. G. Kallen, and G. K. Wang. 1999. Comparison of slow inactivation in human heart and rat skeletal muscle Na channel chimeras. J. Physiol. (Lond.). 515.1:61-73.

O'Reilly, J. P., S.-Y. Wang, and G. K. Wang. 2000. A point mutation in domain 4-segment 6 of the skeletal muscle sodium channel produces an atypical inactivation state. Biophys. J. 78:773-784.

Patton, D. E., J. W. West, W. A. Catterall, and A. L. Goldin. 1992. Amino acid residues required for fast Na+-channel inactivation: charge neutralizations and deletions in the III-IV linker. Proc. Natl. Acad. Sci. U.S.A. 89:10905-10909.

Rudy, B. 1978. Slow inactivation of the sodium conductance in squid giant axons. Pronase resistance. J. Physiol. (Lond.). 283:1-21.

Ruff, R. L., L. Simoncini, and W. Stuhmer. 1988. Slow sodium channel inactivation in mammalian muscle: a possible role in regulating excitability. Muscle Nerve. 11:502-510.

Sawczuk, A., R. K. Powers, and M. D. Binder. 1995. Spike frequency adaptation studied in hypoglossal motoneurons of the rat. J. Neurophysiol. 73:1799-1810.

Smith, M. R., and A. L. Goldin. 1997. Interaction between the sodium channel inactivation linker and domain III S4-S5. Biophys. J. 73: 1885-1895.

Struyk, A. F., K. A. Scoggan, D. E. Bulman, and S. C. Cannon. 2000. The human skeletal muscle Na channel mutation R669H associated with hypokalemic periodic paralysis enhances slow inactivation. J. Neurosci. 20:8610-8617.

Stuhmer, W., F. Conti, H. Suzuki, X. D. Wang, M. Noda, N. Yahagi, H. Kubo, and S. Numa. 1989. Structural parts involved in activation and inactivation of the sodium channel. Nature. 339:597-603.

Takahashi, M. P., and S. C. Cannon. 1999. Enhanced slow inactivation by V445M: a sodium channel mutation associated with myotonia. Biophys. J. 76:861-868.

Trimmer, J. S., S. S. Cooperman, S. A. Tomiko, J. Y. Zhou, S. M. Crean, M. B. Boyle, R. G. Kallen, Z. H. Sheng, R. L. Barchi, and F. J. Sigworth. 1989. Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron. 3:33-49.

Tytgat, J., and P. Hess. 1992. Evidence for cooperative interactions in potassium channel gating. Nature. 359:420-423.

Ukomadu, C., J. Zhou, F. J. Sigworth, and W. S. Agnew. 1992. Il Na+ channels expressed transiently in human embryonic kidney cells: biochemical and biophysical properties. Neuron. 8:663-676.

Vedantham, V., and S. C. Cannon. 2000. Rapid and slow voltagedependent conformational changes in segment IVS6 of voltage-gated Na(+) channels. Biophys. J. 78:2943-2958.

Vilin, Y. Y., N. Makita, A. L. J. George, and P. C. Ruben. 1999. Structural determinants of slow inactivation in human cardiac and skeletal muscle sodium channels. Biophys. J. 77:1384-1393.

Wang, S.-Y., M. Barile, and G. K. Wang. 2001. Disparate role of Na(+) channel D2-S6 residues in batrachotoxin and local anesthetic action. Mol. Pharmacol. 59:1100-1107.

Wang, S.-Y., C. Nau, and G. K. Wang. 2000. Residues in Na(+) channel D3-S6 segment modulate both batrachotoxin and local anesthetic affinities. Biophys. J. 79:1379-1387.

Wang, S.-Y., and G. K. Wang. 1997. A mutation in segment I-S6 alters slow inactivation of sodium channels. Biophys. J. 72:1633-1640. Wang, S.-Y., and G. K. Wang. 1998. Point mutations in segment I-S6

render voltage-gated Na+ channels resistant to batrachotoxin. Proc. Natl. Acad. Sci. U.S.A. 95:2653-2658.

Wang, S.-Y., and G. K. Wang. 1999. Batrachotoxin-resistant Na+ channels derived from point mutations in transmembrane segment D4-S6. Biophys. J. 76:3141-3149.

Wang, D. W., K. Yazawa, A. L. J. George, and P. B. Bennett. 1996. Characterization of human cardiac Na+ channel mutations in the congenital long QT syndrome. Proc. Natl. Acad. Sci. U.S.A. 93: 13200-13205.

Yang, N., A. L. George, and R. Horn. 1997. Probing the outer vestibule of a sodium channel voltage sensor. Biophys. J. 73:2260-2268. Yarov-Yarovoy, V., J. Brown, E. M. Sharp, J. J. Clare, T. Scheuer, and

W. A. Catterall. 2001. Molecular determinants of voltage-dependent gating and binding of pore-blocking drugs in transmembrane segment IIIS6 of the Na+ channel alpha subunit. J. Biol. Chem. 276:20-27.

Yellen, G. 1998. The moving parts of voltage-gated ion channels. Q. Rev. Biophys. 31:239-295.

John P. O'Reilly,* Sho-Ya Wang,^ and Ging Kuo Wang*

*Department of Anesthesia Research, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; and ^Department of Biological Sciences, State University of New York at Albany, Albany, New York 12222 USA

Received for publication 1 June 2001 and in final form 12 July 2001.

Address reprint requests to John P. O'Reilly, Ph.D., Department of Anesthesia Research, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115. Tel.: 617-732-6883; Fax: 617-730-2801; E-mail: joreilly@zeus.bwh.harvard.edu.

Copyright Biophysical Society Oct 2001
Provided by ProQuest Information and Learning Company. All rights Reserved

Return to Hypokalemic periodic paralysis
Home Contact Resources Exchange Links ebay