Find information on thousands of medical conditions and prescription drugs.

Hypothalamic dysfunction

Hypothalamic-pituitary dysfunction is a term to describe a nonorganic relative inactivity of the gonadotropin-releasing hormone (GnRH) system of the hypothalamus and its dependent pituitary gonadotrophs that normally produce follicle stimulating hormone, FSH, and luteinizing hormone, LH. The condition occurs during the reproductive years and leads to hypogonadotropic hypogonadism. Women will experience primary or secondary amenorrhea and men lack of sexual interest and impotence. more...

Home
Diseases
A
B
C
D
E
F
G
H
Hairy cell leukemia
Hallermann Streiff syndrome
Hallux valgus
Hantavirosis
Hantavirus pulmonary...
HARD syndrome
Harlequin type ichthyosis
Harpaxophobia
Hartnup disease
Hashimoto's thyroiditis
Hearing impairment
Hearing loss
Heart block
Heavy metal poisoning
Heliophobia
HELLP syndrome
Helminthiasis
Hemangioendothelioma
Hemangioma
Hemangiopericytoma
Hemifacial microsomia
Hemiplegia
Hemoglobinopathy
Hemoglobinuria
Hemolytic-uremic syndrome
Hemophilia A
Hemophobia
Hemorrhagic fever
Hemothorax
Hepatic encephalopathy
Hepatitis
Hepatitis A
Hepatitis B
Hepatitis C
Hepatitis D
Hepatoblastoma
Hepatocellular carcinoma
Hepatorenal syndrome
Hereditary amyloidosis
Hereditary angioedema
Hereditary ataxia
Hereditary ceroid...
Hereditary coproporphyria
Hereditary elliptocytosis
Hereditary fructose...
Hereditary hemochromatosis
Hereditary hemorrhagic...
Hereditary...
Hereditary spastic...
Hereditary spherocytosis
Hermansky-Pudlak syndrome
Hermaphroditism
Herpangina
Herpes zoster
Herpes zoster oticus
Herpetophobia
Heterophobia
Hiccups
Hidradenitis suppurativa
HIDS
Hip dysplasia
Hirschsprung's disease
Histoplasmosis
Hodgkin lymphoma
Hodgkin's disease
Hodophobia
Holocarboxylase...
Holoprosencephaly
Homocystinuria
Horner's syndrome
Horseshoe kidney
Howell-Evans syndrome
Human parvovirus B19...
Hunter syndrome
Huntington's disease
Hurler syndrome
Hutchinson Gilford...
Hutchinson-Gilford syndrome
Hydatidiform mole
Hydatidosis
Hydranencephaly
Hydrocephalus
Hydronephrosis
Hydrophobia
Hydrops fetalis
Hymenolepiasis
Hyperaldosteronism
Hyperammonemia
Hyperandrogenism
Hyperbilirubinemia
Hypercalcemia
Hypercholesterolemia
Hyperchylomicronemia
Hypereosinophilic syndrome
Hyperhidrosis
Hyperimmunoglobinemia D...
Hyperkalemia
Hyperkalemic periodic...
Hyperlipoproteinemia
Hyperlipoproteinemia type I
Hyperlipoproteinemia type II
Hyperlipoproteinemia type...
Hyperlipoproteinemia type IV
Hyperlipoproteinemia type V
Hyperlysinemia
Hyperparathyroidism
Hyperprolactinemia
Hyperreflexia
Hypertension
Hypertensive retinopathy
Hyperthermia
Hyperthyroidism
Hypertrophic cardiomyopathy
Hypoaldosteronism
Hypocalcemia
Hypochondrogenesis
Hypochondroplasia
Hypoglycemia
Hypogonadism
Hypokalemia
Hypokalemic periodic...
Hypoparathyroidism
Hypophosphatasia
Hypopituitarism
Hypoplastic left heart...
Hypoprothrombinemia
Hypothalamic dysfunction
Hypothermia
Hypothyroidism
Hypoxia
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Medicines

The immediate cause is a decease or lack of GnRH pulses. This may occur idiopathic, or as a result of stress or lack of caloric support. Eating disorders may lead to hypothalamic-pituitary dysfunction. Measurements of FSH and/or LH tend to show low or undetectable values, and sex hormones produced by the gonads show low levels as well. Hyperprolactinemia as well as a number of lesions in the hypothalamic or pituitary area may also lead to hypogonadotropic hypogonadism and need to be excluded before the diagnosis of hypothalamic-pituitary dysfunction can be made.

Treatment may need to address issues of hypogonadism, infertility, and osteoporosis.

Read more at Wikipedia.org


[List your site here Free!]


Pituitary Dysfunction After Traumatic Brain Injury (TBI)
From Dynamic Chiropractic, 3/26/05 by Croft, Arthur

Years ago, an internist colleague, Keith Sehnert, and I reported on over 100 whiplash patients who had developed hypothyroidism in the aftermath of acute whiplash injury. In contrast to the more common clinical finding of decreased T4 and an elevated thyroid-stimulating hormone (TSH), we usually found either normal TSH or low TSH, speculating that these cases might be the result of a central (e.g., hypothalamic) form of pituitary dysfunction.1 These findings are of special interest to me because I developed hypothyroidism following my own mild traumatic brain injury (MTBI). Nine years after our paper was published, I continue to get the occasional inquiry on this interesting subject for which the literature remains rather scant - just recently from an internist in Israel. Scant though the literature may be, according to the authors of a more recent paper, the first documentation of pituitary failure from TBI goes back to 1918.2 Complicating recognition of the connection between injury and the development of hypothyroidism is the thyroid gland's ability to store up to four months' worth of hormone, coupled with the fairly common occurrence of the condition among the uninjured.

The association between TBI and various endocrinological conditions seems to be, at least from my experience, not widely appreciated. A question we raised in 1996 was, "How many cases of hypothyroidism (or indeed, any form of hypo- or hyperpituitarism) are the downstream result of TBI and how often is this association not made?" The authors of the present paper also voiced the concern that the signs of hypopituitarism may often go unrecognized and cautioned that clinicians should watch for them in their TBI patients. Even when they are eventually recognized clinically, how often are these conditions attributed correctly to prior trauma? I suspect this attribution is frequently overlooked; MTBI itself is often overlooked by clinicians.

Bondanelli, et al., studied the occurrence and risk factors of pituitary dysfunction, including growth hormone deficiency (GHD), in 50 patients (mean age 37.6 +/- 2.4 years; 40 males, ages 20-60 years; 10 females, ages 23-87 years) with TBI over five years.2 According to the Glasgow Coma Scale (GCS), 16 patients had suffered from mild, 7 from moderate, and 27 from severe TBI. The Glasgow Outcome Scale (GOS) indicated severe disability in 5, moderate disability in 11, and good recovery in 34 cases.

The authors demonstrated several cases in which T4 and TSH were low and one case in which T4 was low with a normal TSH. Similar to our own findings, in no cases did they find high TSH. This paper is a good source of references to this interesting literature (although the authors apparently did not find our 1996 paper). They cite studies, for example, that report finding hypopituitarism in 60-69 percent of TBI cases, which supports their own findings.

The symptoms of GHD include significant alterations in body composition, decreased muscular strength, low exercise capacity, and diminished bone mineral content, as well as impairments in the sense of well-being and quality of life. To evaluate this, the authors infused GH-releasing hormone (GHRH) and arginine intravenously and measured the spike in GH at several intervals after that. A GH peak higher than 16.5 µg/L was considered normal; less than 9 µg/L was considered diagnostic for "severe" GHD. ACTH was normal in all cases. The breakdown of their findings was as follows:

GHD: 51.8%

Hypogonadism: 25.9%

Hyperprolactinemia: 14.8%

Hypoprolactinemia: 14.8%

Hypothyroidism: 18.5%

Decreased LH and FSH were found in 22 percent of the test subjects.

Most of these patients were males. There was a relationship to injury seventy on the basis of the GCS, although even individuals with MTBI showed abnormalities - but interestingly, not to the appearance on CT. There also was no correlation with GOS (1 = death; 2 = persistent vegetative state; 3 = severe disability; 4 = moderate disability; 5 = good recovery). The authors speculate that the injury might be blamed on hypoxic injury to the hypothalamus or pituitary.

In our previous study, we speculated that the central lesions might be in the region of the hypothalamus that could result in a diminished release of thyrotropin-releasing factor (TRF), which regulates the release of TSH, which, in turn, increases all cellular activity in the thyroid gland and the subsequent release of thyroid hormone. The usual negative feedback between the thyroid gland and TSH is that a drop in thyroid hormone production results in a release of TSH from the pituitary gland. This, in fact, is the most common clinical picture in hypothyroidism today, with laboratory studies typically showing an elevation of TSH and a decrease in thyroid hormone. When TSH is low in hypothyroidism, it may signal the involvement of the hypothalamus and a condition we dubbed "posttraumatic hypothyroidism."

Animal studies of TBI have demonstrated that diffuse axonal injuries resulting from brain acceleration injuries are often found in the hypothalamic region - a finding consistent with CT and MRI findings reported in humans exposed to similar forces. It seems likely that such injuries could adversely affect any hormonal axis associated with the hypothalamus and pituitary gland, although there is not much literature on the subject. Bondanelli, et al., offer further support for such a hypothesis, which Keith Sehnert and I had advanced earlier. I think the take-home points of this discussion should be that (a) many of these conditions occur in the weeks or months following the injury; (b) these conditions are often subtle and may go unnoticed until they become progressively more severe with time; and (c) by the time they are recognized, associations between the initial injury and clinical manifestations are frequently overlooked. Laboratory tests are simple ways of following MTBI patients.

This article is available online at www.chiroweb.coni/columiiist/ croft. You may also leave a comment or ask a question at his "Talk Back" forum at the same location.

References

1. Sehnert KW, Croft AC. Basal metabolic temperature vs. laboratory assessment in "posttraumatic hypothyroidism." / Manip Physiological Therap 1996;(1):6-12.

2. Bondanelli M, De Marinis L, Ambrosio MR, et al. Occurrence of pituitary dysfunction following traumatic brain injury. / Neurotrauma June 2004;21(6):685-96.

Arthur Croft, DC, MS, MPH, FACO. Previous articles, a "Talk Back'; forum and a brief biography of the author are available online at www.chiroweb.com/columnist/croft.

Arthur Croft, DC, MS, MPH, FACO

Director, Spine Research Institute of San Diego

San Diego, California

info@srisd.com

Copyright Dynamic Chiropractic Mar 26, 2005
Provided by ProQuest Information and Learning Company. All rights Reserved

Return to Hypothalamic dysfunction
Home Contact Resources Exchange Links ebay