ABSTRACT Limb-girdle muscular dystrophy type 2A (LGMD2A) is an autosomal recessive disorder characterized by selective atrophy of the proximal limb muscles. Its occurrence is correlated, in a large number of patients, with defects in the human CAPN3 gene, a gene that encodes the skeletal muscle-specific member of the calpain family, calpain 3 (or p94). Because calpain 3 is difficult to study due to its rapid autolysis, we have developed a molecular model of calpain 3 based on the recently reported crystal structures of m-calpain and on the high-sequence homology between p94 and m-calpain (47% sequence identity). On the basis of this model, it was possible to explain many LGMD2A point mutations in terms of calpain 3 inactivation, supporting the idea that loss of calpain 3 activity is responsible for the disease. The majority of the LGMD2A mutations appear to affect domain/domain interaction, which may be critical in the assembly and the activation of the multi-domain calpain 3. In particular, we suggest that the flexibility of protease domain I in calpain 3 may play a critical role in the functionality of calpain 3. In support of the model, some clinically observed calpain 3 mutations were generated and analyzed in recombinant m-calpain. Mutations of residues forming intramolecular domain contacts caused the expected loss of activity, but mutations of some surface residues had no effect on activity, implying that these residues in calpain 3 may interact in vivo with other target molecules. These results contribute to an understanding of structure-function relationships and of pathogenesis in calpain 3.
INTRODUCTION
This work is supported by the Protein Engineering Network of Centres of Excellence. Excellent technical assistance from Sherry Gauthier and Yvonne Lam is fully appreciated. We would also like to thank Chris Hosfield for insightful discussions and help in analyzing the crystal structure of rat m-calpain. Zongchao Jia holds a Canada Research Chair.
Received for publication 3 January 2001 and in final form 21 March 2001.
REFERENCES
Arthur, J. S. C., S. Gauthier, and J. S. Elce. 1995. Active site residues in m-calpain: identification by site-directed mutagenesis. FEBS Lett. 368: 397-400.
Belcastro, A. N., L. D. Shewchuk, and D. A. Raj. 1998. Exercise-induced muscle injury: a calpain hypothesis. Mol. Cell. Biochem. 179:135-145. Carafoli, E., and M. Molinari. 1998. Calpain: a protease in search of a function? Biochem. Biophys. Res. Commun. 247:193-203.
Chou, F. L., C. Angelini, D. Daentl, C. Garcia, C. Greco, I. HausmanowaPetrusewicz, A. Fidzianska, H. Wessel, and E. P. Hoffman. 1999. Calpain III mutation analysis of a heterogeneous limb-girdle muscular dystrophy population. Neurology. 52:1015-1020.
Dutt, P., J. S. C. Arthur, P. Grochulski, M. Cygler, and J. S. Elce. 2000. Roles of individual EF-hands in the activation of m-calpain by calcium. Biochem. J 348:37-43.
Elce, J. S., C. Hegadorn, S. Gauthier, J. W. Vince, and P. L. Davies. 1995. Recombinant calpain II: improved expression systems and production of
a C105A active-site mutant for crystallography. Protein Eng. 8:843-848.
Fardeau, M., D. Hillaire, C. Mignard, N. Feingold, J. Feingold, D. Mignard, B. de Ubeda, H. Collin, F. M. Tome, I. Richard, and J. S. Beckmann. 1996. Juvenile limb-girdle muscular dystrophy. Clinical, histopathological and genetic data from a small community living in the Reunion Island. Brain. 199:295-308.
Hosfield, C. M., J. S. Elce, P. L. Davies, and Z. Jia. 1999. Crystal structure of calpain reveals the structural basis for Ca2+-dependent protease activity and a novel mode of enzyme activation. EMBO J. 18: 6880-6889.
Kinbara, K., S. Ishiura, S. Tomioka, H. Sorimachi, S. Y. Jeong, S. Amano, H. Kawasaki, B. Kolmerer, S. Kimura, S. Labeit, and K. Suzuki. 1998. Purification of native p94, a muscle-specific calpain and characterization of its autolysis. Biochem. J. 335:589-596.
Kraulis, P. J. 1991. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24:946-950. Laskowski, R. A., M. W. MacArthur, D. S. Moss, and J. M. Thornton.
1993. Procheck: A program to check the stereochemical quality of protein structures. J. AppL Crystallogr. 26:283-291.
Minami, N., I. Nishino, 0. Kobayashi, K. Ikezoe, Y. Goto, and I. Nonaka. 1999. Mutations of calpain 3 gene in patients with sporadic limb-girdle muscular dystrophy in Japan. J. NeuroL Sci. 171:31-37.
Ono, Y., H. Shimada, H. Sorimachi, I. Richard, T. C. Saido, J. S. Beckmann, S. Ishiura, and K. Suzuki. 1998. Functional defects of a musclespecific calpain, p94, caused by mutations associated with limb-girdle muscular dystrophy type 2A. J. BioL Chem. 273:17073-17078.
Ono, Y., H. Sorimachi, and K. Suzuki. 1999. New aspect of the research on limb-girdle muscular dystrophy 2A: a molecular biologic and biochemical approach to pathology. Trends Cardiovasc. Med. 9:114-118.
Peitsch, M. C. 1996. ProMod and Swiss-Model: Internet-based tools for automated comparative protein modeling. Biochem. Soc. Trans. 24: 274-279.
Richard, I., L. Brenguier, P. Dincer, C. Roudaut, B. Bady, J. M. Burgunder, R. Chemaly, C. A. Garcia, G. Halaby, C. E. Jackson, D. M. Kurnit, G. Lefranc, C. Legum, J. Loiselet, L. Merlini, A. Nivelon-Chevallier, E. Ollagnon-Roman, G. Restagno, H. Topaloglu, and J. S. Beckmann. 1997. Multiple independent molecular etiology for limb-girdle muscular dystrophy type 2A patients from various geographical origins. Am. J. Hum. Genet. 60:1128-1138.
Richard, L, 0. Broux, V. Allamand, F. Fougerousse, N. Chiannilkulchai, N. Bourg, L. Brenguier, C. Devaud, P. Pasturaud, and C. Roudaut. 1995. Mutations in the proteolytic enzyme calpain3. cause limb-girdle muscular dystrophy type 2A. CelL 81:27-40.
Richard, L, C. Roudaut, A. Saenz, R. Pogue, J. E. Grimbergen, L. V. Anderson, C. Beley, A. M. Cobo, C. de Diego, B. Eymard, P. Gallano, H. B. Ginjaar, A. Lasa, C. Pollitt, H. Topaloglu, J. A. Urtizberea, M. de Visser, A. van der Kooi, K. Bushby, E. Bakker, A. Lopez de Munain, M. Fardeau, and J. S. Beckmann. 1999. Calpainopathy-a survey of mutations and polymorphisms. Am. J. Hum. Genet. 64:1524-1540.
Sorimachi, H., S. Ishiura, and K. Suzuki. 1997. Structure and physiological function of calpains. Biochem. J. 328:721-732.
Sorimachi, H., N. Minami, Y. Ono, K. Suzuki, and I. Nonaka. 2000. Limb-girdle muscular dystrophy with calpain 3 (p94) gene mutations (calpainopathy). Neurosci. News. 3:20-27.
Sorimachi, H., N. Toyama-Sorimachi, T. C. Saido, H. Kawasaki, H. Sugita, M. Miyasaka, K. Arahata, S. Ishiura, and K. Suzuki. 1993. Musclespecific calpain, p94, is degraded by autolysis immediately after translation, resulting in disappearance from muscle. J. Biol. Chem. 268: 10593-10605.
Strobl, S., C. Fernandez-Catalan, M. Braun, R. Huber, H. Masumoto, K. Nakagawa, A. Irie, H. Sorimachi, G. Bourenkow, H. Bartunik, K. Suzuki, and W. Bode. 2000. The crystal structure of calcium-free human m-calpain suggests an electrostatic switch mechanism for activation by calcium. Proc. Natl. Acad. Sci. U.S.A. 97:588-592.
Zongchao Jia,* Vitali Petrounevitch,* Andrew Wong,* Tudor Moldoveanu,* Peter L. Davies,* John S. Elce,* and Jacques S. Beckmannt
*Department of Biochemistry, Queen's University and The Protein Engineering Network of Centres of Excellence, Kingston, Ontario K7L 3N6, Canada; and tDepartment of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
Address reprint requests to Dr. Zongchao Jia, Department of Biochemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6. Tel: 613-5336277; Fax: 613-533-2497; E-mail: jia@post.queensu.ca.
Copyright Biophysical Society Jun 2001
Provided by ProQuest Information and Learning Company. All rights Reserved