Find information on thousands of medical conditions and prescription drugs.

Long QT Syndrome

The long QT syndrome (LQTS) is a heart disease in which there is an abnormally long delay between the electrical excitation (or depolarization) and relaxation (repolarization) of the ventricles of the heart. It is associated with syncope (loss of consciousness) and with sudden death due to ventricular arrhythmias. Arrhythmias in individuals with LQTS are often associated with exercise or excitement. The cause of sudden cardiac death in individuals with LQTS is ventricular fibrillation. more...

Home
Diseases
A
B
C
D
E
F
G
H
I
J
K
L
Amyotrophic lateral...
Bardet-Biedl syndrome
Labyrinthitis
Lafora disease
Landau-Kleffner syndrome
Langer-Giedion syndrome
Laryngeal papillomatosis
Laryngomalacia
Lassa fever
LCHAD deficiency
Leber optic atrophy
Ledderhose disease
Legg-Calvé-Perthes syndrome
Legionellosis
Legionnaire's disease
Leiomyoma
Leiomyosarcoma
Leishmaniasis
Lemierre's syndrome
Lennox-Gastaut syndrome
Leprechaunism
Leprophobia
Leprosy
Leptospirosis
Lesch-Nyhan syndrome
Leukemia
Leukocyte adhesion...
Leukodystrophy
Leukomalacia
Leukoplakia
LGS
Li-Fraumeni syndrome
Lichen planus
Ligyrophobia
Limb-girdle muscular...
Limnophobia
Linonophobia
Lipodystrophy
Lipoid congenital adrenal...
Liposarcoma
Lissencephaly
Lissencephaly syndrome...
Listeriosis
Liticaphobia
Liver cirrhosis
Lobster hand
Locked-In syndrome
Loiasis
Long QT Syndrome
Long QT syndrome type 1
Long QT syndrome type 2
Long QT syndrome type 3
LSA
Lung cancer
Lupus erythematosus
Lyell's syndrome
Lygophobia
Lyme disease
Lymphangioleiomyomatosis
Lymphedema
Lymphoma
Lymphosarcoma
Lysinuric protein...
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Medicines

Individuals with LQTS have a prolongation of the QT interval on the ECG. The Q point on the ECG corresponds to the beginning of ventricular depolarization while the T point corresponds to the beginning of ventricular repolarization. The QT interval is measured from the Q point to the end of the T wave. While many individuals with LQTS have persistent prolongation of the QT interval, some individuals do not always show the QT prolongation; in these individuals, the QT interval may prolong with the administration of certain medications.

Genetics

The two most common types of LQTS are genetic and drug-induced. Genetic LQTS can arise from mutation to one of several genes. These mutations tend to prolong the duration of the ventricular action potential (APD), thus lengthening the QT interval. LQTS can be inherited in an autosomal dominant or an autosomal recessive fashion. The autosomal recessive forms of LQTS tend to have a more severe phenotype, with some variants having associated syndactyly or congenital neural deafness. A number of specific genes loci have been identified that are associated with LQTS. Following is a list of the most common mutations:

  • LQT1 - mutations to the alpha subunit of the slow delayed rectifier potassium channel (KvLQT1 or KCNQ1). The current through the heteromeric channel (KvLQT1+minK) is known as IKs. This mutation is thought to cause LQT by reducing the amount of repolarizing action potential current that prolongs action potential duration (APD). These mutations tend to be the most common yet least severe.
  • LQT2 - mutations to the alpha subunit of the fast delayed rectifier potassium channel (HERG + miRP). Current through this channel is known as IKr. This phenotype is also probably caused by a reduction in repolarizing current.
  • LQT3 - mutations to the alpha subunit of the sodium channel (SCN5A). Current through is channel is commonly referred to as INa. Depolarizing current through the channel late in the action potential is thought to prolong APD. The late current is due to failure of the channel to remain inactivated and hence enter a bursting mode in which significant current can enter when it should not. These mutations are more lethal but less common.
  • LQT4 - mutations in an anchor protein Ankyrin B which anchors the ion channels in the cell. Very rare.
  • LQT5 - mutations in the beta subunit MinK which coassembles with KvLQT1.
  • LQT6 - mutations in the beta subunit MiRP1 which coassembles with HERG.
  • LQT7 - mutations in the potassium channel KCNJ2 which leads to Andersen-Tawil syndrome.
  • LQT8 - mutations in the calcium channel Cav1.2 encoded by the gene CACNA1c leading to Timothy's syndrome

Other mutations affect the beta subunits ion channels. For example LQT6 affects minK (aka KCNE1) which is the beta subunit that coassembles with KCNQ1 to form IKs channels.

Read more at Wikipedia.org


[List your site here Free!]


Cardiac risk in LQTS may not rise in pregnancy: pregnancy, postpartum not high-risk periods for events in women with long QT syndrome, study suggests
From OB/GYN News, 5/15/05 by Bruce Jancin

ORLANDO, FLA. -- Pregnancy and postpartum are not especially high-risk periods for cardiac events in women with long QT syndrome, G. Michael Vincent, M.D., reported at the annual meeting of the American College of Cardiology.

Indeed, cardiac event rates--sudden death, syncope, and aborted cardiac arrest--are highest in women with long QT syndrome (LQTS) in the periods prior to first pregnancy and during the nonpregnant portion of the childbearing years, according to Dr. Vincent of LDS Hospital and the University of Utah, Salt Lake City.

These findings from a unique database housed at LDS Hospital are at odds with an earlier report by other investigators, who reported that the postpartum period in women with LQTS was associated with a 41-fold increased rate of cardiac events (Circulation 1998;97:451-6).

That report was based on data from nongenotyped probands in the International LQTS Registry. Probands are almost always the most symptomatic members of LQTS families, and they are not representative of the LQTS population as a whole, he argued.

In contrast, the 32-year-old LDS Hospital database contains 367 LQTS families whose pedigrees have been expanded to include 6,268 members. Most have been systematically screened for LQTS, and since 1992, many have been genotyped. This database thus includes unaffected family members, as well as others encompassing the spectrum of the LQTS phenotype, rendering the Utah data singularly applicable to the broad population of LQTS women.

For this analysis Dr. Vincent reported on 255 women with 747 term pregnancies. They came from 120 LQTS families. The combined cardiac event rate during pregnancy was 3.1%. The event rate in the postpartum period--defined as the 9 months after delivery--was 3.5%. In contrast, 23.9% of the women experienced a cardiac event while not pregnant but in their childbearing years, as defined by the interval from their first pregnancy to last postpartum period.

Prior to their first pregnancy, 23.5% of subjects experienced a cardiac event, as did 2.4% after their final postpartum period.

No sudden cardiac deaths occurred during pregnancy. There were four post partum: three among 46 women with the LQT2 genotype, compared with just one of 101 LQT1 women. Most cardiac events in LQT1 women occurred prior to the childbearing years.

BY BRUCE JANCIN

Denver Bureau

COPYRIGHT 2005 International Medical News Group
COPYRIGHT 2005 Gale Group

Return to Long QT Syndrome
Home Contact Resources Exchange Links ebay