Red blood cell infected with P.vivaxThe countries where malaria is known to occur are shown in red. Source: CDC.
Find information on thousands of medical conditions and prescription drugs.

Malaria

Malaria (Italian: "bad air"; formerly called ague or marsh fever in English) is an infectious disease which in humans causes about 350-500 million infections and approximately 1.3 million deaths annually, mainly in the tropics. Sub-Saharan Africa accounts for 85% of these fatalities. more...

Home
Diseases
A
B
C
D
E
F
G
H
I
J
K
L
M
Mac Ardle disease
Macroglobulinemia
Macular degeneration
Mad cow disease
Maghazaji syndrome
Mal de debarquement
Malaria
Malignant hyperthermia
Mallory-Weiss syndrome
Malouf syndrome
Mannosidosis
Marburg fever
Marfan syndrome
MASA syndrome
Mast cell disease
Mastigophobia
Mastocytosis
Mastoiditis
MAT deficiency
Maturity onset diabetes...
McArdle disease
McCune-Albright syndrome
Measles
Mediterranean fever
Megaloblastic anemia
MELAS
Meleda Disease
Melioidosis
Melkersson-Rosenthal...
Melophobia
Meniere's disease
Meningioma
Meningitis
Mental retardation
Mercury (element)
Mesothelioma
Metabolic acidosis
Metabolic disorder
Metachondromatosis
Methylmalonic acidemia
Microcephaly
Microphobia
Microphthalmia
Microscopic polyangiitis
Microsporidiosis
Microtia, meatal atresia...
Migraine
Miller-Dieker syndrome
Mitochondrial Diseases
Mitochondrial...
Mitral valve prolapse
Mobius syndrome
MODY syndrome
Moebius syndrome
Molluscum contagiosum
MOMO syndrome
Mondini Dysplasia
Mondor's disease
Monoclonal gammopathy of...
Morquio syndrome
Motor neuron disease
Motorphobia
Moyamoya disease
MPO deficiency
MR
Mucopolysaccharidosis
Mucopolysaccharidosis...
Mullerian agenesis
Multiple chemical...
Multiple endocrine...
Multiple hereditary...
Multiple myeloma
Multiple organ failure
Multiple sclerosis
Multiple system atrophy
Mumps
Muscular dystrophy
Myalgic encephalomyelitis
Myasthenia gravis
Mycetoma
Mycophobia
Mycosis fungoides
Myelitis
Myelodysplasia
Myelodysplastic syndromes
Myelofibrosis
Myeloperoxidase deficiency
Myoadenylate deaminase...
Myocarditis
Myoclonus
Myoglobinuria
Myopathy
Myopia
Myositis
Myositis ossificans
Myxedema
Myxozoa
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Medicines

Malaria is caused by the protozoan parasites of the genus Plasmodium (one of the Apicomplexa), and the transmission vector for human malarial parasite is the female Anopheles mosquito. The P. falciparum variety of the parasite accounts for 80% of cases and 90% of deaths. Pregnant women and children under the age of five are most vulnerable to malaria.

For his discovery of the cause of malaria, French army doctor Charles Louis Alphonse Laveran was awarded the Nobel Prize for Physiology or Medicine in 1907. Britain's Sir Ronald Ross also received a Nobel prize (in 1902) for describing the life cycle of the malaria parasite as it develops in the bodies of its mosquito and human hosts.

Symptoms

Symptoms of malaria include fever, shivering, arthralgia (joint pain), vomiting, anemia, and convulsions. There may be the feeling of tingling in the skin, particularly with malaria caused by P. falciparum. Complications of malaria include coma and death if untreated—young children are especially vulnerable. Splenomegaly (enlarged spleen), intense headaches, cerebral ischemia and hemoglobinuria with renal failure may occur.

Mechanism of the disease

Infected female Anopheles mosquitoes carry Plasmodium sporozoites in their salivary glands. If they pierce a person's skin, which they usually do starting at dusk and continuing throughout the night, the sporozoites enter the person's body via the mosquito's saliva, migrate to the liver where they multiply within hepatic liver cells asexually. There they develop into merozoites which then enter red blood cells, where they multiply further, again asexually, periodically breaking out of the exploited red blood cells. The classical description of waves of fever coming every two or three days arises from simultaneous waves of merozoites breaking out of red blood cells during the same day. Development in the hepatic cell takes 6 to 15 days depending on the species. Some of the sporozoites in vivax and ovale malaria do not develop into merozoites immediately, but produce hypnozoites that remain dormant for several months (typically, from 6 to 12, but sometimes up to 3 years). After a period of dormancy, they reactivate and produce merozoites. Hypnozoites are responsible for long incubation and late relapses in these two species of malaria. About a half of the cases of vivax infection in temperate areas start after having overwintered, i.e. during the next year after the mosquito bite. The parasite is relatively protected from attack by the body's immune system because for most of its human life cycle it stays inside liver and blood cells. However, circulating infected blood cells are destroyed in the spleen. To avoid this fate, the parasite produces certain surface proteins which infected blood cells present on their cell surface, causing the blood cells to stick to the walls of blood vessels. These surface proteins known as PfEMP1 are highly variable (there are at least 50 variations) and cannot serve as a reliable target for the immune systeme.

Read more at Wikipedia.org


[List your site here Free!]


Nosocomial malaria and saline flush
From Emerging Infectious Diseases, 7/1/05 by Sanjay K. Jain

An investigation of malaria in a US patient without recent travel established Plasmodium falciparum molecular genotype identity in 2 patients who shared a hospital room. P. falciparum can be transmitted in a hospital environment from patient to patient by blood inoculum if standard precautions are breached.

**********

Almost all of the 1,400 cases of malaria reported each year in the United States are acquired by mosquito bite during travel in malaria-endemic areas (1). However, mosquito transmission in the United States accounts for a few cases each year (2). Nosocomial malaria represents person-to-person transmission of parasite-infected erythrocytes through blood transfusion, needlestick injury, improper use of blood glucometers, multidose heparin vials, organ transplantation, contaminated catheters that deliver contrast medium, or rarely, open wounds (3-6).

Nosocomial transmission of malaria secondary to inpatient nursing practices has never been reported in the United States. We report nosocomial transmission of Plasmodium falciparum, confirmed by molecular genotyping, by improper use of saline flush syringes in a tertiary care hospital in the United States.

The Study

Abdominal pain, emesis, and a high fever developed in patient 1, a 9-year-old Gambian boy with sickle cell disease residing in the United States, during the flight home after a month in the Gambia; he had taken no malaria prophylaxis drugs. After diagnosis of P. falciparum malaria with 4% parasitemia and transfer to unit A of a tertiary care hospital, he responded well to antimalarial therapy and was discharged 2 days later.

Seven days before patient 1's admission, patient 2, a 14-year-old girl, with severe developmental delay, was admitted to unit A for placement of a surgical feeding tube. Patients 1 and 2 shared a unit A semiprivate room for [approximately equal to] 24 hours. Patient 1 received a continuous quinidine gluconate infusion through a peripheral intravenous line. Chart review and interviews indicated that neither patient had glucose monitoring by glucometer, blood transfusions, common infusions such as contrast material, or a needle-stick injury report, all events that have been previously implicated in nosocomial malaria. Medicine doses given and blood samples drawn were documented with a separation time >50 minutes. A week after discharge and 17 days after sharing the semiprivate room, patient 2 was admitted to another hospital (3-day stay), and a viral illness was diagnosed after all cultures were negative for pathogens. Persistent fever and pancytopenia developed and resulted in her readmission to unit A of the tertitary care hospital, now 23 days after sharing the room with patient 1. Patient 2 was febrile and pale, with no notable change in her baseline neurologic state. The leukocyte count was 1,890 cells/[mm.sup.3], hematocrit was 35.2%, platelets were 47,000/[mm.sup.3], and total bilirubin was 1.5 mg/dL. Despite administration of antimicrobial drugs for presumed microbial sepsis, the following conditions developed over the next 72 hours: persistent spiking fevers; loose, nonbloody stools; splenomegaly; abdominal distension; and bilateral lower extremity edema. Formal review of her peripheral blood smear by the hematology consultation service showed intraerythrocytic ring forms indicative of P. falciparum malaria, with 12% parasitemia and [approximately equal to] 200 gametocytes/[mm.sup.3]. After 3 blood transfusions and quinidine gluconate and doxycycline therapy, the patient was discharged on hospital day 14, with a stable hematocrit, persistent gametocytemia, and splenomegaly. Initial and follow up tests on patient 2 were negative for viral blood-borne pathogens. The patient lives with her parents in the Baltimore-Washington area [approximately equal to] 12 miles from the nearest international airport. She had no history of recent travel to any areas that are endemic for malaria. No locally acquired cases of malaria had been reported in the regional area. This prompted an investigation to look for a nosocomial route of transmission. Approval for the study was obtained from Johns Hopkins University

Two potential sources of nosocomial transmission in unit A were identified: 1) heparin syringes, which were filled from multidose vials, and 2) factory preloaded 10-mL saline flushes, of which up to 3 mL was used per flush for intravenous lines not in use. Hospital policy had strict guidelines for using multidose devices and did not allow reusing single use devices. However, interviews of 7 nurses, including those who cared for the 2 patients, showed that 2 nurses admitted reusing saline flushes on the same patient, and 4 nurses had observed saline flushes being reused in unit A. Reusing multidose heparin vials was not documented.

To determine whether used saline flush syringes that were visibly clear contained blood, we tested saline from 8 used syringes and 2 unused controls. The contents of only 1 used saline flush syringe visibly contained blood. After the contents were centrifuged to concentrate erythrocytes, blood was found in 4 of 8 of the used syringes (Figure 1) by using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (7). No blood was found in the unused syringes.

[FIGURE 1 OMITTED]

Polymerase chain reaction (PCR) amplification of P. falciparum genomic DNA, isolated with DNAzol (Invitrogen, Carlsbad, CA, USA), was successful from the archived Giemsa blood films from both patients and 2 other patients (not related in time or travel history) infected with P. falciparum malaria seen at our institution in the past year. Figure 2 shows that the PCR product restriction digests for the polymorphic P. falciparum merozoite protein 2 (Pfmsp2) (8) and the P. falciparum chloroquine resistance transporter (Pfcrt) (9) gene fragments were identical for patients 1 and 2. This identity was also confirmed by sequence analysis.

[FIGURE 2 OMITTED]

We also examined 4 P. falciparum microsatellite alleles (TA81, PFPK, C13M30, C4M8) at independent chromosomal loci by a fluorescent-tagged heminested PCR amplification (10). Patients 1 and 2 had identical Plasmodium microsatellite lengths at all 4 loci; each of the positive controls was different as shown in Figure 2, the online Appendix Figure (available at http://www.cdc.gov/ncidod/ EID/volllno07/05-0092_appG.htm), and the Table. With the simplistic assumption of [greater than or equal to] 10 alleles at each microsatellite loci and Pfmsp2, the chance occurrence of identity is <1:100,000. By using the AmpFLSTR Profiler kit (Applied Biosystems, Foster City, CA, USA), subsequent forensic analysis of the human genomic DNA from leukocytes in the same isolated P. falciparum DNA samples from the blood films demonstrated the sex difference between patients 1 and 2. The analysis also demonstrated the differences at 9 human microsatellite loci, which indicated that cross-contamination during processing was not a likely source for the similarities detected.

Conclusions

Natural transmission of malaria between patients 1 and 2 by a mosquito is not possible within 24 hours; the maturation cycle from ingestion of viable gametocytes in a blood meal to infective sporozoite stage in the mosquito salivary glands is 8-35 days (11). Direct mechanical transmission of parasitized blood by an arthropod vector is a theoretical possibility, but no such transmission has ever been reported, and the female Anopheles mosquito does not regurgitate blood upon refeeding. Another remote possibility, luggage malaria, is the introduction of an already infectious mosquito from the Gambia brought into unit A through patient l's luggage (12). If this were the case, a different parasitic genotype would be expected in patients 1 and 2 because the wild mosquito that infected patient 1, from 1 to 2 weeks before onset of symptoms, would have died 2-6 days after delivering the infective bite. Likewise, an asymptomatic traveling companion of patient 1 would have a distinct parasite genotype.

In this report, epidemiologic investigation excluded many nosocomial routes of transmission. Potential sources not excluded were multidose heparin vials and saline flush syringes. However, identifying reuse of saline flush syringes in the unit and detecting blood in clear, used saline flush syringes suggested that this was the most likely source. Finally, molecular identity of P. falciparum isolated from patients 1 and 2, as assessed by restriction fragment length polymorphism of Pfmsp2, and forensic microsatellite analysis of P. falciparum genotypes confirmed that contaminated fluid from patient 1 was the source of the infection in patient 2. Together, these data strongly suggest that apparently clear solution in a used saline flush syringe containing infected P. falciparum erythrocytes, was reused on a neighboring patient, leading to nosocomial transmission of malaria. Saline flush vials and bags have been implicated in nosocomial transmission of hepatitis B and microbes, respectively (13,14).

Theoretically, a single infected erythrocyte is able to transmit malaria by inoculation. Patient 1 had almost 200 million infected erythrocytes per milliliter of blood based on parasitemia level. Based on our data, apparently clear saline can contain [approximately equal to] 1 million erythrocytes per milliliter. Therefore a single microliter of patient 1's blood diluted into 5 mL of saline would be almost 40,000 infected erythrocytes per milliliter of an apparently clear solution.

Our report illustrates that nosocomial transmission can occur in a tertiary care setting in the United States, despite healthcare workers' access to gloves, disposable needles, intravenous devices, and flushes. The common perception that flushing practices are not associated with the aspiration of minute amounts of blood contributed to this occurrence of nosocomial malaria. Our institution, like many others, has used such episodes to facilitate change and refocus on patient safety. The interventions initiated specifically included retraining of pediatric staff about 1) no reuse of single use saline flushes, 2) transmission of bloodborne pathogens with an emphasis on nonviral pathogens, and 3) removal of multidose vials, including those with heparin, from pediatric units. Warnings about the potential risks of reusing saline flush syringes have been incorporated into institution-wide safety training. Ongoing rigorous review of healthcare practices and strict adherence to body and fluid precautions are essential for minimizing patient exposure to highly infectious pathogens, even in resource-rich settings.

Acknowledgments

We thank Lirong Shi, Karen Mackie, and the pediatric intensive care unit and hospital epidemiology and infection control staff who assisted in this investigation. We also thank Stephen Dumler for his continued encouragement and support.

The AB-Mass Spectrometry Facility at the Johns Hopkins School of Medicine is funded by National Center for Research Resources Shared-Instrument Grant 1S10-RR14702. NCCR grant GPDGCRC RR0052 supported the culture of P. falciparum for control DNA.

References

(1.) Filler S, Causer LM, Newman RD, Barber AM, Roberts JM, MacArthur J, et al. Malaria surveillance--United States, 2001. MMWR Surveill Summ. 2003;52:1-14.

(2.) Pastor A, Neely J, Goodfriend D, Marr J, Jenkins S, Woolard D, et al. Local transmission of Plasmodium vivax malaria--Virginia, 2002. MMWR Morb Mortal Wkly Rep. 2002;51:921-3.

(3.) Lettau LA. Nosocomial transmission and infection control aspects of parasitic and ectoparasitic diseases. Part II. Blood and tissue parasites, infect Control Hosp Epidemiol. 1991;12:111-21.

(4.) Arafat R, Long S, Perry M, Marsh S, Wilson M, Avashia S, et al. Probable transfusion-transmitted malaria--Houston, Texas, 2003. MMWR Morb Mortal Wkly Rep. 2003;52:1075-6.

(5.) Alweis RL, DiRosario K, Conidi G, Kain KC, Olans R, Tully JL. Serial nosocomial transmission of Plasmodium falciparum malaria from patient to nurse to patient. Infect Control Hosp Epidemiol. 2004;25:55-9.

(6.) Abulrahi HA, Bohlega EA, Fontaine RE, al-Seghayer S, Mal-Ruwais AA. Plasmodium falciparum malaria transmitted in hospital through heparin locks. Lancet. 1997;349:23-5.

(7.) Jackson PE, Scholl PF, Groopman JD. Mass spectrometry for genotyping: an emerging tool for molecular medicine. Mol Med Today. 2000;6:271-6.

(8.) Felger I, Smith T, Edoh D, Kitua A, Alonso P, Tanner M, et al. Multiple Plasmodium falciparum infections in Tanzanian infants. Trans R Soc Trop Med Hyg. 1999;93 Suppl 1:29-34.

(9.) Djimde A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourte Y, et al. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med. 2001;344:257-63.

(10.) Anderson TJ, Su XZ, Bockarie M, Lagog M, Day KP. Twelve microsatellite markers for characterization of Plasmodium falciparum from finger-prick blood samples. Parasitology. 1999;119 (Pt 2): 113-25.

(11.) Do Rosario VE, Vaughan JA, Coleman RE. Analysis of the sporogonic development of Plasmodium falciparum and Plasmodium berghei in anopheline mosquitoes. Parassitologia. 1989;31:101-11.

(12.) Guillet P, Germain MC, Giacomini T, Chandre F, Akogbeto M, Faye O, et al. Origin and prevention of airport malaria in France. Trop Med Int Health. 1998;3:700-5.

(13.) Oren I, Hershow RC, Ben-Porath E, Krivoy N, Goldstein N, Rishpon S, et al. A common-source outbreak of fulminant hepatitis B in a hospital. Ann Intern Med. 1989;110:691-8.

(14.) Chodoff A, Pettis AM, Schoonmaker D, Shelly MA. Polymicrobial gram-negative bacteremia associated with saline solution flush used with a needleless intravenous system. Am J Infect Control. 1995;23:357-63.

Sanjay K. Jain, * Deborah Persaud, * Trish M. Perl, * Margaret A. Pass, * Kathleen M. Murphy, * John M. Pisciotta, * Peter F. Scholl, * James F. Casella, * and David J. Sullivan *

* Johns Hopkins University, Baltimore, Maryland, USA

Dr. Jain is a senior clinical and research fellow in pediatric infectious diseases at Johns Hopkins University. His research interests include tropical diseases and central nervous system tuberculosis.

Address for correspondence: David J. Sullivan, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe St, E5628, Baltimore, MD 21287, USA; fax; 410-955-0105; email: dsulliva@jhsph.edu

Use of trade names is for identification only and does not imply endorsement by the Public Health Service or by the U.S. Department of Health and Human Services.

COPYRIGHT 2005 U.S. National Center for Infectious Diseases
COPYRIGHT 2005 Gale Group

Return to Malaria
Home Contact Resources Exchange Links ebay