Marburg virus
Find information on thousands of medical conditions and prescription drugs.

Marburg fever

The Marburg virus is the causative agent of Marburg hemorrhagic fever. Both the disease and virus are related to Ebola and originate in the same part of Africa (Uganda and Eastern Congo). The zoonosis is of unknown origin, but some scientists believe it may be hosted by bats. more...

Home
Diseases
A
B
C
D
E
F
G
H
I
J
K
L
M
Mac Ardle disease
Macroglobulinemia
Macular degeneration
Mad cow disease
Maghazaji syndrome
Mal de debarquement
Malaria
Malignant hyperthermia
Mallory-Weiss syndrome
Malouf syndrome
Mannosidosis
Marburg fever
Marfan syndrome
MASA syndrome
Mast cell disease
Mastigophobia
Mastocytosis
Mastoiditis
MAT deficiency
Maturity onset diabetes...
McArdle disease
McCune-Albright syndrome
Measles
Mediterranean fever
Megaloblastic anemia
MELAS
Meleda Disease
Melioidosis
Melkersson-Rosenthal...
Melophobia
Meniere's disease
Meningioma
Meningitis
Mental retardation
Mercury (element)
Mesothelioma
Metabolic acidosis
Metabolic disorder
Metachondromatosis
Methylmalonic acidemia
Microcephaly
Microphobia
Microphthalmia
Microscopic polyangiitis
Microsporidiosis
Microtia, meatal atresia...
Migraine
Miller-Dieker syndrome
Mitochondrial Diseases
Mitochondrial...
Mitral valve prolapse
Mobius syndrome
MODY syndrome
Moebius syndrome
Molluscum contagiosum
MOMO syndrome
Mondini Dysplasia
Mondor's disease
Monoclonal gammopathy of...
Morquio syndrome
Motor neuron disease
Motorphobia
Moyamoya disease
MPO deficiency
MR
Mucopolysaccharidosis
Mucopolysaccharidosis...
Mullerian agenesis
Multiple chemical...
Multiple endocrine...
Multiple hereditary...
Multiple myeloma
Multiple organ failure
Multiple sclerosis
Multiple system atrophy
Mumps
Muscular dystrophy
Myalgic encephalomyelitis
Myasthenia gravis
Mycetoma
Mycophobia
Mycosis fungoides
Myelitis
Myelodysplasia
Myelodysplastic syndromes
Myelofibrosis
Myeloperoxidase deficiency
Myoadenylate deaminase...
Myocarditis
Myoclonus
Myoglobinuria
Myopathy
Myopia
Myositis
Myositis ossificans
Myxedema
Myxozoa
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Medicines

The disease is spread through bodily fluids, including blood, excrement, saliva, and vomit. There is no cure or vaccine for this deadly and infectious virus. Victims suffer a high fever, diarrhea, vomiting, and severe bleeding from bodily orifices and usually die within a week. Fatality rates range from 25 to 100 %.

In the spring of 2005, the virus attracted widespread press attention for an outbreak in Angola. Beginning in October 2004 and continuing into 2005, the outbreak, which is now thought to be under control, was the world's worst epidemic of any kind of hemorrhagic fever.

The Marburg virus

The viral structure is typical of filoviruses, with long threadlike particles which have a consistent diameter but vary greatly in length from an average of 800 nanometres up to 14,000 nm, with peak infectious activity at about 790 nm. Virions (viral particles) contain seven known structural proteins. While nearly identical to Ebola virus in structure, Marburg virus is antigenically distinct from Ebola virus — in other words, it triggers different antibodies in infected organisms. It was the first filovirus to be identified.

Infection details

Because many of the signs and symptoms of Marburg hemorrhagic fever are similar to those of other infectious diseases, such as malaria or typhoid, diagnosis of the disease can be difficult, especially if only a single case is involved.

The disease is characterised by the sudden onset of fever, headache, and muscle pain after an incubation period of 3-9 days. Within a week, a maculopapular rash develops, followed by vomiting, chest and abdominal pain, and diarrhea. The disease can then become increasingly damaging, causing jaundice, delirium, organ failure, and extensive hemorrhage. Patients generally die from hypovolemic shock as fluid leaks out of the blood vessels, causing blood pressure to drop.

Recovery from the disease is prolonged and can be marked by orchitis, recurrent hepatitis, transverse myelitis or uveitis, or inflammation of the spinal cord, eyes, or parotid gland. Depending upon health care and hospitalization support, the disease can have very high fatality rates, with estimates ranging from 25 % up to 100 %.

Infection is believed to be spread by close contact with body fluids of those infected, and the virus is unlikely to spread through casual contact. Patients are most contagious during the acute phase of the illness when fluids such as vomit and blood are present. Unsafe burial practices such as embracing, kissing or ritual bathing of the corpse present another infection vector.

According to a report in the New York Times, the virus moves very quickly. "On Day 3 of the infection, fewer than 200 viruses are in a drop of blood. By Day 8, there are five million."

Read more at Wikipedia.org


[List your site here Free!]


Lassa fever, Nigeria, 2003 and 2004
From Emerging Infectious Diseases, 10/1/05 by Sunday Aremu Omilabu

To the Editor: Suspected outbreaks of Lassa fever have been reported in the northern part of Edo, Nigeria, including Ekpoma, Igarra, and Ibilo, in 2001 and between November 2003 and March 2004 (1,2). To confirm Lassa fever activity in this area, serum samples were collected at the Specialist Teaching Hospital in Irrua (ISTH) from September 2003 to January 2004. Approximately 16,000 patients are seen each year at ISTH, and [approximately equal to] 80% of them have febrile illness. Serum specimens were taken from patients with febrile illness (n = 31), healthy contact persons (n = 17), and healthy hospital staff (n = 12). The samples were analyzed by Lassa virus-specific reverse-transcriptase polymerase chain reaction (RT-PCR) at the University of Lagos. Aliquots of specimens were sent to the Bernhard-Nocht Institute (BNI in Hamburg, Germany) for confirmatory PCR analysis, serologic testing, and virus isolation. The PCR used at both facilities was based on primers 80F2 and 36E2 that targeted the glycoprotein precursor (GPC) gene (3), although the protocols were slightly different. At BNI, virus RNA was purified by QIAamp viral RNA kit (Qiagen, Hilden, Germany), and RT-PCR was performed with Superscript II RT/Platinum Taq polymerase 1-step reagents (Invitrogen, Karlsruhe, Germany). This PCR assay has a 95% detection limit of 2,500 copies/mL (4). At the University of Lagos, virus RNA purification and RT-PCR were performed with diatomaceous silica and Brilliant single-step RT-PCR kit (Stratagene, Heidelberg, Germany), respectively. Serologic testing for Lassa virus-specific immunoglobulin G (IgG) and IgM was performed by indirect immunofluorescence assay (IFA) by using Vero cells infected with Lassa virus strain Josiah. Virus was isolated in the biosafety level 4 laboratory at BNI with Vero cells. Results of the tests are summarized in the Table.

Acute Lassa virus infection, as shown by a positive PCR result, was diagnosed at the University of Lagos in 1 patient. This result was independently confirmed at BNI, and 2 additional samples tested positive by PCR. The PCR signals were weak, which suggests that discrepancies between laboratories stem from higher sensitivity of the assay used at BNI. Presence of a low IgM titer in the absence of IgG in 2 of the PCR-positive samples is also consistent with an acute infection. Two of the Lassa virus-positive persons (04-02 and 04-10) had febrile illness that indicated symptomatic Lassa fever, while 1 (04-04) had been classified as an asymptomatic contact at the time of sampling. Retrospective investigation showed no evidence of illness in this person before or after sampling. Sequencing the diagnostic PCR fragments (300 nucleotides [nt] of GPC gene) from the 3 patients indicated infections by closely related strains. The sequence of patient 04-10 (GenBank accession no. DQ010031) differed by 4% from those of patients 04-02 and 04-04, while the latter sequences were identical (GenBank accession no. DQ010030). The facts that patients 04-02 and 04-04 were sisters who lived in the same house, that their samples were taken on the same day (January 28, 2004), and that the sequences were identical suggest a common source of infection or an infection chain. The detection of an asymptomatic or mild Lassa virus infection in the contact person agrees with population-based studies in Sierra Leone that show only 9%-26% of all Lassa virus infections are associated with fever (5).

In an additional 10 samples, IgM with or without IgG was detected, primarily in patients with febrile illness. IgG in the absence of IgM was detected in 1 contact and 4 healthcare workers. All serologic IFA findings were confirmed with [mu]-capture and IgG enzyme-linked immunosorbent assays developed at BNI. Virus isolation was attempted with all samples that tested positive by PCR or IgM IFA. Lassa virus was isolated from 1 PCR-positive serum (04-10). The strain was designated Nig04-010. To characterize Lassa virus circulating in north Edo, phylogenetic analysis was performed. In addition to the GPC sequences of the diagnostic PCR fragments, part of the L gene of Nig04-010 was amplified and sequenced (780 nt, GenBank accession no. AY693637). Phylogenetic analysis of these sequences showed that the virus circulating around Irrua belongs to phylogenetic lineage II, which comprises Lassa virus strains from the southeastern part of Nigeria (6). Thus, genotype and geographic origin of the viruses characterized here correspond.

These data provide evidence for Lassa fever activity in north Edo. Approximately 6% of febrile patients tested had PCR-confirmed Lassa fever, which extrapolates to hundreds of patients with Lassa fever per year, when one considers the number of patients with febrile illness seen at ISTH. As shown here and elsewhere, PCR is a useful tool to diagnose Lassa virus infection (3,7), a prerequisite for effective ribavirin treatment (8). First steps have been made to establish molecular diagnostics for Lassa virus at the University of Lagos. Further efforts are necessary to improve the laboratory infrastructure in the country.

Acknowledgments

We thank Corinna Thome for technical assistance.

The study was supported by a grant from the Bundesamt fur Wehrtechnik und Beschaffung (E/B41G/1G309/1A403 to S.G.) and grants from the Alexander von Humboldt Foundation (V-8121/NRI/ 1070140 to S.A.O.). The Bernhard-Nocht Institute is a World Health Organization Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research (DEU-000115).

References

(1.) Lassa fever--Nigeria (Edo). 2004 Feb 14 [cited 2004 Dec 8]. Available from http://www.promedmail.org, archive number 20040214.0487.

(2.) Lassa fever, suspected--Nigeria (Edo). 2001 Mar 19 [cited 2004 Dec 8]. Available from http://www.promedmail.org, archive number 20010319.0552.

(3.) Demby AH, Chamberlain J, Brown DW, Clegg CS. Early diagnosis of Lassa fever by reverse transcription PCR. J Clin Microbiol. 1994;32:2898-903.

(4.) Drosten C, Gottig S, Schilling S, Asper M, Panning M, Schmitz H, et al. Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription PCR. J Clin Microbiol. 2002;40:2323-30.

(5.) McCormick JB, Webb PA, Krebs JW, Johnson KM, Smith ES. A prospective study of the epidemiology and ecology of Lassa fever. J Infect Dis. 1987;155:437-44.

(6.) Bowen MD, Rollin PE, Ksiazek TG, Hustad HL, Bausch DG, Demby AH, et al. Genetic diversity among Lassa virus strains. J Virol. 2000;74:6992-7004.

(7.) Trappier SG, Conaty AL, Farrar BB, Auperin DD, McCormick JB, Fisher-Hoch SP. Evaluation of the polymerase chain reaction for diagnosis of Lassa virus infection. Am J Trop Med Hyg. 1993;49:214-21.

(8.) McCormick JB, King IJ, Webb PA, Scribner CL, Craven RB, Johnson KM, et al. Lassa fever. Effective therapy with ribavirin. N Engl J Med. 1986;314:20-6.

Sunday Aremu Omilabu, * Sikiru Olanrewaju Badaru, * Peter Okokhere, ([dagger]) Danny Asogun, ([dagger]) Christian Drosten, ([double dagger]) Petra Emmerich, ([double dagger]) Beate Becker-Ziaja, ([double dagger]) Herbert Schmitz, ([double dagger]) and Stephan Gunther ([double dagger])

* College of Medicine of the University of Lagos, Idi-Araba, Lagos, Nigeria; ([dagger]) Irrua Specialist Teaching Hospital, Irrua, Edo, Nigeria; and ([double dagger]) Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany

Address for correspondence: Stephan Gunther, Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, Bernhard-Nocht Str 74, 20359 Hamburg, Germany; fax: 49-40-4281-8378; email: guenther@bni. Uni-hamburg.de

COPYRIGHT 2005 U.S. National Center for Infectious Diseases
COPYRIGHT 2005 Gale Group

Return to Marburg fever
Home Contact Resources Exchange Links ebay