Find information on thousands of medical conditions and prescription drugs.

Melioidosis

Melioidosis, also known as pseudoglanders and Whitmore's disease (after Capt Alfred Whitmore) is an uncommon infectious disease caused by a Gram-negative bacterium, Burkholderia pseudomallei, found in soil and water. It exists in acute and chronic forms. more...

Home
Diseases
A
B
C
D
E
F
G
H
I
J
K
L
M
Mac Ardle disease
Macroglobulinemia
Macular degeneration
Mad cow disease
Maghazaji syndrome
Mal de debarquement
Malaria
Malignant hyperthermia
Mallory-Weiss syndrome
Malouf syndrome
Mannosidosis
Marburg fever
Marfan syndrome
MASA syndrome
Mast cell disease
Mastigophobia
Mastocytosis
Mastoiditis
MAT deficiency
Maturity onset diabetes...
McArdle disease
McCune-Albright syndrome
Measles
Mediterranean fever
Megaloblastic anemia
MELAS
Meleda Disease
Melioidosis
Melkersson-Rosenthal...
Melophobia
Meniere's disease
Meningioma
Meningitis
Mental retardation
Mercury (element)
Mesothelioma
Metabolic acidosis
Metabolic disorder
Metachondromatosis
Methylmalonic acidemia
Microcephaly
Microphobia
Microphthalmia
Microscopic polyangiitis
Microsporidiosis
Microtia, meatal atresia...
Migraine
Miller-Dieker syndrome
Mitochondrial Diseases
Mitochondrial...
Mitral valve prolapse
Mobius syndrome
MODY syndrome
Moebius syndrome
Molluscum contagiosum
MOMO syndrome
Mondini Dysplasia
Mondor's disease
Monoclonal gammopathy of...
Morquio syndrome
Motor neuron disease
Motorphobia
Moyamoya disease
MPO deficiency
MR
Mucopolysaccharidosis
Mucopolysaccharidosis...
Mullerian agenesis
Multiple chemical...
Multiple endocrine...
Multiple hereditary...
Multiple myeloma
Multiple organ failure
Multiple sclerosis
Multiple system atrophy
Mumps
Muscular dystrophy
Myalgic encephalomyelitis
Myasthenia gravis
Mycetoma
Mycophobia
Mycosis fungoides
Myelitis
Myelodysplasia
Myelodysplastic syndromes
Myelofibrosis
Myeloperoxidase deficiency
Myoadenylate deaminase...
Myocarditis
Myoclonus
Myoglobinuria
Myopathy
Myopia
Myositis
Myositis ossificans
Myxedema
Myxozoa
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Medicines

The causative organism, Burkholderia pseudomallei, was thought to be a member of the Pseudomonas genus and was previously known as Pseudomonas pseudomallei. This organism is phylogenetically related closely to Burkholderia mallei, the organism that causes glanders. Another closely-related but less virulent bacterium is found in Thailand and is called Burkholderia thailandensis.

Melioidosis is endemic in parts of south east Asia and northern Australia. Its true extent has not been completely defined but it has been noted before in Africa, India, parts of the Middle East and Central and South America. It affects humans as well as other animals such as goats, sheep, horses and cattle. The mode of infection is usually either through an infected laceration or burn or through inhalation of aerosolized B. pseudomallei.

There has also been interest in melioidosis because it has the potential to be developed as a biological weapon.

Symptoms and signs

Patients with chronic or latent melioidosis may be symptom free for decades.

A patient with active melioidosis usually presents with fever. There may be pains in multiple sites around his/her body due to bacteremia and abscess formation. Patients with melioidosis usually have risk factors for disease, such as diabetes, thalassemia or renal disease. However, otherwise healthy patients, including children, may also get melioidosis.

If there is pulmonary involvement, there may be signs and symptoms of pneumonia.

If hepatic or splenic abscesses are present, the patient may present with abdominal pain. If there are brain abscesses present, the patient may present with neurological signs and symptoms. An encephalomyelitis syndrome is recognised in northern Australia.

Melioidosis may also cause osteomyelitis and present with bony pain.

In Thailand, parotid abscesses in children are common.

Diagnosis

A definite history of contact with soil or animals may not be elicited as melioidosis can be dormant for many years before becoming acute. Attention should be paid to a history of travel to endemic areas in returned travellers. Patients with diabetes mellitus often have a more serious presentation of melioidosis.

A definitive diagnosis can be made by growing B. pseudomallei from blood cultures or from pus aspirated from an abscess. Culture mediums may need to have additional agents added to facilitate the growth of B. pseudomallei.

There is also a serological test for melioidosis, but this is not commercially available in some countries. A high background titre may complicate diagnosis.

If clinically indicated, CT scans (or, in some cases, ultrasound scans) of the thorax and abdomen are useful to investigate for the presence of abscesses and to rule out other diseases.

Read more at Wikipedia.org


[List your site here Free!]


Melioidosis in tsunami survivors
From Emerging Infectious Diseases, 10/1/05 by Eugene Athan

To the Editor: A tsunami devastated coastal areas of the Indian Ocean rim in December 2004. Of the affected countries, more than half of the [approximately equal to] 300,000 deaths occurred in the Aceh Province of Indonesia, close to the epicenter of the earthquake near northern Sumatra. Infrastructure, including medical and laboratory facilities, in this region was severely damaged. Of >1,000,000 survivors, >500,000 likely were injured. Most injuries were from trauma, but a substantial number were caused by aspiration of, or immersion in, saltwater that may have been contaminated by soil, sewage, or other environmental sources.

Melioidosis, caused by the saprophytic gram-negative bacillus Burkholderia pseudomallei, is endemic in Southeast Asia and northern Australia. Most cases have been found in northeastern Thailand, Singapore, and northern Australia. Melioidosis has been reported only sporadically from Indonesia and mainly in returning travelers (1-3).

In the context of acute medical relief efforts to the town of Banda Aceh, we report on 10 patients with pneumonia, including 4 patients with culture-confirmed melioidosis, after their immersion in contaminated saltwater during the tsunami. Clinical and laboratory services were reestablished on January 3, 2005, at Fakinah Hospital and on January 13, 2005, at Zainoel Abidin Hospital by the relief teams. Patients were identified opportunistically; details of treatment and outcome were reviewed retrospectively. Cultures were taken when clinically indicated and when specimens were available. Sputum cultures were plated onto horse blood agar, cystine lactose electrolyte-deficient agar, Haemophilus agar, and colistin/ nalidixic acid blood agar incubated in a candle jar at 35[degrees]C for [less than or equal to] 3 days. Colonies suspicious for B. pseudomallei were subcultured to B. cepacia-selective media (Oxoid, Adelaide, South Australia, Australia). Blood cultures and screening cultures of throat and rectum specimens were not performed routinely. Isolates of B. pseudomallei and characteristic antimicrobial drug susceptibilities were confirmed with API20NE (bioMerieux, Marcy l'Etoile, France).

From January 3 to January 28, 2005, a total of 10 cases of postimmersion pneumonia were identified. All patients were <18 years of age and previously well; 6 were male. No cases were epidemiologically linked to others. The patients were treated 10-35 days after the tsunami. Eight had bilateral alveolar opacities on chest radiograph; 3 also had empyema. Clinical, radiologic, and microbiologic details are summarized in the online Table (Available from http://www.cdc.gov/ncidod/EID/vol 11 no 10/05-0740.htm#table).

The sputum cultures of 4 patients were positive for B. pseudomallei. Except posttsunami exposure, none had risk factors for melioidosis, including diabetes, renal failure, or thalassemia. Other co-isolated organisms included Pseudomonas aeruginosa and Klebsiella sp.; 2 patients who did not have cultures taken had cavitatory lung disease. All patients with melioidosis were treated with meropenem, and all but 1 clinically improved in the hospital.

This is the second report of melioidosis from within Indonesia (1) and the second published report of melioidosis after the tsunami disaster (4). Cases from this event were included in a preliminary communication (5). However, exported cases of melioidosis from Indonesia, as well as the neighboring countries of Singapore and Malaysia, have been reported previously (2,3), a likely indication that this infection is underrecognized in Indonesia. Melioidosis has also been reported in tsunami survivors from Sri Lanka (4) and Thailand.

A striking feature of this event is the lack of predisposing factors and the young age of the patients. This feature likely represents the unique mode of acquisition and magnitude of the infecting inoculum, as well as the vulnerability of children to near drowning after flooding. One third of the patients had empyema, which reflects both the severity of pulmonary disease and delay in receiving medical care. Undoubtedly, a substantial selection bias occurred by including only patients who sought hospital treatment, and this is suggested by the low death rate. Melioidosis, acquired after near drowning, has been associated with a short incubation period and severe disease. However, patients who had melioidosis before medical aid arrived in the region would likely have died. Patients with longer incubation periods also may have acquired melioidosis through contaminated wounds with subsequent hematogenous dissemination.

Medical services to the region were by no means comprehensive during this time. Many other patients with postimmersion pneumonia and melioidosis may have been overlooked, both during the study (for persons who were not treated or if cultures were not taken) and afterwards; the incubation period of melioidosis may be [less than or equal to] 62 years. A further limitation is the lack of denominator data because no reliable records were kept on hospital admissions, and the exact number of survivors is not yet known. Conflicting data are found on the accuracy of the API20NE test kit used to identify bacteria in this study (6-9), but we believe that the clinical features and microbiologic findings suggest melioidosis.

This report confirms that B. pseudomallei exists in the Aceh Province of Indonesia and that melioidosis and gram-negative pneumonia may complicate saltwater immersion in this region. After near drowning incidents, melioidosis is characterized by severe pulmonary disease, including pleural effusions. Clinicians worldwide should be mindful that melioidosis in tsunami survivors may appear many years after exposure.

Acknowledgments

We thank Rus Munander; colleagues who participated in acute medical relief efforts in Banda Aceh; Geoff Hogg; Emergency Management Australia; Queensland Health; Queensland Ambulance Service; our colleagues who supported us at home; and Diana Huis in 't Velt who translated the Dutch case report.

The Australian Agency for International Development and the Australian Department of Foreign Affairs and Trade provided support for relief efforts.

References

(l.) Snijders EP. Melioidosis op Java. Nederlands. Tijdschr Geneeskd. 1933;77: 560-1.

(2.) Schindler N, Calligaro KD, Dougherty M J, Diehl J, Modi KH, Braffman MN. Melioidosis presenting as an infected intrathoracic subclavian artery pseudoaneurysm treated with femoral vein interposition graft. J Vasc Surg. 2002;35:569-72.

(3.) Dance DA, Smith MD, Aucken HM, Pitt TL. Imported melioidosis in England and Wales. Lancet. 1999;353:208.

(4.) Nieminen T, Vaara M. Burkholderia pseudomallei infections in Finnish tourists injured by the December 2004 tsunami in Thailand. Euro Surveill. 2005;10.

(5.) Allworth AM. Tsunami lung: a necrotising pneumonia in survivors of the Asian tsunami. Med J Aust. 2005; 182:364.

(6.) Glass MB, Popovic T. Preliminary evaluation of the API 20NE and RapID NF plus systems for rapid identification of Burkholderia pseudomallei and B. mallei. J Clin Microbiol. 2005;43:479-83.

(7.) Inglis TJ, Chiang D, Lee GS, Chor-Kiang L. Potential misidentification of Burkholderia pseudomallei by API 20NE. Pathology. 1998;30:62-4.

(8.) Lowe P, Engler C, Norton R. Comparison of automated and nonautomated systems for identification of Burkholderia pseudomallei. J Clin Microbiol. 2002;40:4625-7.

(9.) Dance DA, Wuthiekanun V, Naigowit P, White NJ. Identification of Pseudomonas pseudomallei in clinical practice: use of simple screening tests and API 20NE. J Clin Pathol. 1989;42:645-8.

Eugene Athan,* Anthony M. Allworth, [dagger] Catherine Engler, [double dagger] Ivan Bastian, [section] and Allen C. Cheng * [paragraph]

* The Geelong Hospital, Geelong, Victoria, Australia; [dagger] Royal Brisbane Hospital, Brisbane, Queensland, Australia; [double dagger] Queensland Health Pathology Services, Townsville, Queensland, Australia; [section] Institute of Medical and Veterinary Science, Adelaide, South Australia, Australia; and [paragraph] Menzies School of Health Research, Darwin, Northern Territory, Australia

Eugene Athan, Anthony M. Allworth, Catherine Engler, and Ivan Bastian participated in medical relief efforts, collected data, and contributed to writing this article. Allen C. Cheng analyzed the results and wrote the article.

Address for correspondence: Eugene Athan, Department of Infectious Diseases, The Geelong Hospital, Barwon Health, Ryrie St, Geelong 3220, Australia; fax: 61-3-5260-3040; email: eugene@barwonhealth.org.au

COPYRIGHT 2005 U.S. National Center for Infectious Diseases
COPYRIGHT 2005 Gale Group

Return to Melioidosis
Home Contact Resources Exchange Links ebay