Normal vision for a achromatopsic colour-blind person. Courtesy NIH National Eye InstituteThe same view when achromatopsic and myopic.
Find information on thousands of medical conditions and prescription drugs.

Myopia

Myopia is a refractive defect of the eye in which light focuses in front of the retina. Those with myopia are often described as nearsighted or short-sighted in that they typically can see nearby objects clearly but distant objects appear blurred because the lens cannot flatten enough. The opposite of myopia is hyperopia or "farsightedness". more...

Home
Diseases
A
B
C
D
E
F
G
H
I
J
K
L
M
Mac Ardle disease
Macroglobulinemia
Macular degeneration
Mad cow disease
Maghazaji syndrome
Mal de debarquement
Malaria
Malignant hyperthermia
Mallory-Weiss syndrome
Malouf syndrome
Mannosidosis
Marburg fever
Marfan syndrome
MASA syndrome
Mast cell disease
Mastigophobia
Mastocytosis
Mastoiditis
MAT deficiency
Maturity onset diabetes...
McArdle disease
McCune-Albright syndrome
Measles
Mediterranean fever
Megaloblastic anemia
MELAS
Meleda Disease
Melioidosis
Melkersson-Rosenthal...
Melophobia
Meniere's disease
Meningioma
Meningitis
Mental retardation
Mercury (element)
Mesothelioma
Metabolic acidosis
Metabolic disorder
Metachondromatosis
Methylmalonic acidemia
Microcephaly
Microphobia
Microphthalmia
Microscopic polyangiitis
Microsporidiosis
Microtia, meatal atresia...
Migraine
Miller-Dieker syndrome
Mitochondrial Diseases
Mitochondrial...
Mitral valve prolapse
Mobius syndrome
MODY syndrome
Moebius syndrome
Molluscum contagiosum
MOMO syndrome
Mondini Dysplasia
Mondor's disease
Monoclonal gammopathy of...
Morquio syndrome
Motor neuron disease
Motorphobia
Moyamoya disease
MPO deficiency
MR
Mucopolysaccharidosis
Mucopolysaccharidosis...
Mullerian agenesis
Multiple chemical...
Multiple endocrine...
Multiple hereditary...
Multiple myeloma
Multiple organ failure
Multiple sclerosis
Multiple system atrophy
Mumps
Muscular dystrophy
Myalgic encephalomyelitis
Myasthenia gravis
Mycetoma
Mycophobia
Mycosis fungoides
Myelitis
Myelodysplasia
Myelodysplastic syndromes
Myelofibrosis
Myeloperoxidase deficiency
Myoadenylate deaminase...
Myocarditis
Myoclonus
Myoglobinuria
Myopathy
Myopia
Myositis
Myositis ossificans
Myxedema
Myxozoa
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Medicines

Myopia is the most common eyesight problem in the world. About one quarter of the adult population in the United States has myopia. In places like Japan, Singapore and Taiwan, as many as 44% of the adult population is myopic.

Myopia is measured in diopters; specifically, the strength of the corrective lens that must be used to enable the eye to focus distant images correctly on the retina. Myopia of 6.00 diopters or greater is considered high, or severe, myopia. People with high myopia are at greater risk of more acute eye problems such as retinal detachment or glaucoma. They are also more likely to experience floaters.

Mainstream ophthalmologists and optometrists most commonly correct myopia through the use of corrective lenses, such as glasses or contact lenses. It may also be corrected by refractive surgery, such as LASIK. The corrective lenses have a negative dioptric value (i.e. are concave) which compensates for the excessive positive diopters of the myopic eye.

Prevalence

A recent Australian study found that less than 1 in 10 (8.4%) children between the ages of 4 and 12 were myopic . According to an American study published in Archives of Ophthalmology, nearly 1 in 10 children between the ages of 5 and 17 have myopia , and a recent Brazilian study found that nearly 1 in 8 (13.3%) of the students in one city were myopic .

A recent study involving first-year undergraduate students in the United Kingdom found that 50% of British whites and 53.4% of British Asians were myopic.

The prevalence of myopia in adults in the United States has been estimated to be approximately 25%, however, a study of Jordanian adults aged 17 to 40 found that over half (53.7%) were myopic .

Myopia is more common in Asians and Jews than in Whites, and more common in Whites than in Blacks (Jensen, 1998).

Pathogenesis

Theories

  • Genetic Factors - The most widely held theory of the cause of myopia is that it is mainly hereditary. Measures of the heritability of myopia have yielded figures as high as 89%, and recent research has identified genes that may be responsible: defective versions of the PAX6 gene seem to be associated with myopia in twin studies . Under this theory, the eye is slightly elongated front to back as a result of faults during development, causing images to be focused in front of the retina rather than directly on it. It is usually discovered during the pre-teen years between eight and twelve years of age. It most often worsens gradually as the eye grows during adolescence and then levels off as a person reaches adulthood. Genetic factors can work in various biochemical ways to cause myopia, a weak or degraded connective tissue is a very essential one. Genetic factors include an inherited, increased susceptibility for environmental influences like excessive near work, and the fact that some people do not develop myopia in spite of very adverse conditions is a clear indication that heredity is involved somehow in any case.
  • Environmental Factors - Another theory is that myopia is caused by a weakening of the ciliary muscle which controls the eye's lens. The weak muscle is unable to adjust the lens enough to see far distances, causing far-off things to be blurred. This theory states that the muscle's weakness is usually caused by doing lots of "nearwork", like reading books or using a computer screen. Since the eye rarely has to focus on far distances, the muscle is rarely used and, as a result, becomes weak. Since corrective lenses do the ciliary muscle's work for it, proponents of this theory suggest that they make it even weaker, increasing the problem. Instead, they recommend a variety of eye exercises to strengthen the muscle. A problem with this theory is that mainstream ophthalmology and medicine hold that the ciliary muscle is used when focussing at close distances, and is relaxed when accommodating for distant vision. Other theories suggest that the eyes become strained by the constant extra work involved in "nearwork" and get stuck in the near position, and eye exercises can help loosen the muscles up thereby freeing it for far vision. These primarily mechanical models appear to be in contrast to research results, which show that the myopic elongation of the eye can be caused by the image quality, with biochemical processes as the actuator. Common to both views is, however, that extensive near work and corresponding accommodation can be essential for the onset and the progression of myopia. A variation of this theory was touted by William Bates in the early 1900s. Bates claimed that with nearwork and other "stresses", the extraocular muscles would squeeze the eyeball causing it to elongate.
  • Near work. Near work has been implicated as a contributing factor to myopia in many studies. New research from NSU College of Optometry shows that students exposed to extensive "near work" are at a higher risk of developing myopia, whereas taking summer or winter vacations (which amount to extended breaks from near work) will either reduce or stop myopic progression .
  • Combination of Genetic and Environmental Factors - Regardless of the accuracy of the ciliary muscle theory, a high heritability of myopia (as for any other condition) does not mean that environmental factors and lifestyle have no effect on the development of the condition. High heritability simply means that most of the variation in a particular population at a particular time is due to genetic differences. If the environment changes - as, for example, it has by the introduction of televisions and computers - the incidence of myopia can change as a result, even though heritability remains high. From a little bit different point of view it could be concluded that – determined by heritage – some people are at a higher risk to develop myopia when exposed to modern environmental conditions with a lot of extensive near work like reading. In other words, it is often not the myopia itself, which is inherited, but the reaction to specific environmental conditions - and this reaction can be the onset and the progression of myopia. In China, myopia is more common in those with higher education background ; some studies suggesting that nearwork may exacerbate a genetic predisposition to develop myopia .
  • Diet and nutrition - One 2002 article suggested that myopia may be caused by over-consumption of bread in childhood, or in general by diets too rich in carbohydrates, which can lead to chronic hyperinsulinemia. Various other components of the diet, however, were made responsible for contributing to myopia as well, as summarized in a documentation.

Read more at Wikipedia.org


[List your site here Free!]


PATHOLOGIC MYOPIA
From Optometric Management, 9/1/05 by Angelilli, Allison

Demographics

* Age range at presentation: 50 years and older

* Gender trends: None

* Racial trends: None

* Refractive error trends: High myopia

* Associated medical conditions: None

Symptoms

* Patients may experience slow, progressive loss of visual acuity or rapid vision loss in the case of exudation due to choroidal neovascularization (CNV) or retinal detachment.

Differential Diagnosis

* Age-related macular degeneration (AMD): Pathologic myopia and AMD may look similar, however, AMD is characterized by drusen and lacks significant peripapillary atrophy. In addition, patients with pathologic myopia are likely to be younger and have higher myopia.

* Angioid streaks: This condition may look similar to the lacquer cracks of myopia, however they are generally bilateral, dark in color and often emanate from the disks. Any CNV generally originates from the streaks themselves in this condition.

Manifestations

Myopic Macular Degeneration

Peripapillary chorioretinal atrophy and linear breaks in Bruch's membrane ("lacquer cracks") are characteristic findings. Choroidal vessels may be visible through the atrophie retinal pigment epithelium.

Management: Fundus photography and fluorcsccin angiography are necessary to document disease progression and to monitor for subretmal neovascularization that may be amenable to photocoagulation or photodynamic therapy with verteporfin (Visudyne).

Subretinal Neovascularization

Ingrowth of new vessels from the choroid into the subretinal space is the most important change that predisposes patients to macular scarring and irreversible vision loss. If fundus examination reveals subretinal blood, exudates or a grayish-green choroidal lesion, the likelihood of CNV is high.

Management: Fluorescein angiography helps identify and locate the neovascularization site. Because of frequent close proximity to the center of the fovea in this population, verteporfin therapy is often the treatment of choice. Rapid referral for diagnosis and treatment is necessary.

Fuch's Spot

This characteristic lesion, which may be associated with subretinal neovascularization, appears in the later stages of pathologic myopia as a raised, circular and pigmented area in the macula.

Management: Fundus photography and fluorescein angiography are necessary to document disease progression as well as monitor for subretinal neovascularization development.

Rhegmatogenous Retinal Detachment

Chorioretinal atrophy, increased axial length and vitreoretinal traction increase the risk of breaks and detachments in normal and affected areas of retina.

Lattice degeneration, representing thinned areas of peripheral retina due to chronic traction by the vitreous, is a sign of increased risk of detachment.

Management: Scierai buckling or pneumatic retinopexy are the two most common and effective surgical techniques for repairing this type of retinal detachment. Rapid referral for management is critical as surgical success increases with the promptness of treatment.

Copyright Boucher Communications, Inc. Sep 2005
Provided by ProQuest Information and Learning Company. All rights Reserved

Return to Myopia
Home Contact Resources Exchange Links ebay