Simplfied Pathway for Phenylalanine Metabolism2Biosynthesis of the Neurotransmitter Serotonin.2
Find information on thousands of medical conditions and prescription drugs.

Phenylketonuria

Phenylketonuria (PKU) is a human genetic disorder, in which the body lacks phenylalanine hydroxylase, the enzyme necessary to metabolize phenylalanine to tyrosine. Left untreated, the disorder can cause brain damage and progressive mental retardation as a result of the accumulation of phenylalanine and its breakdown products. The incidence of occurrence of PKU is about 1 in 15,000 births, but the incidence varies widely in different human populations from 1 in 4,500 births among the Irish to fewer than one in 100,000 births among the population of Finland. more...

Home
Diseases
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Arthritis
Arthritis
Bubonic plague
Hypokalemia
Pachydermoperiostosis
Pachygyria
Pacman syndrome
Paget's disease of bone
Paget's disease of the...
Palmoplantar Keratoderma
Pancreas divisum
Pancreatic cancer
Panhypopituitarism
Panic disorder
Panniculitis
Panophobia
Panthophobia
Papilledema
Paraganglioma
Paramyotonia congenita
Paraphilia
Paraplegia
Parapsoriasis
Parasitophobia
Parkinson's disease
Parkinson's disease
Parkinsonism
Paroxysmal nocturnal...
Patau syndrome
Patent ductus arteriosus
Pathophobia
Patterson...
Pediculosis
Pelizaeus-Merzbacher disease
Pelvic inflammatory disease
Pelvic lipomatosis
Pemphigus
Pemphigus
Pemphigus
Pendred syndrome
Periarteritis nodosa
Perinatal infections
Periodontal disease
Peripartum cardiomyopathy
Peripheral neuropathy
Peritonitis
Periventricular leukomalacia
Pernicious anemia
Perniosis
Persistent sexual arousal...
Pertussis
Pes planus
Peutz-Jeghers syndrome
Peyronie disease
Pfeiffer syndrome
Pharmacophobia
Phenylketonuria
Pheochromocytoma
Photosensitive epilepsy
Pica (disorder)
Pickardt syndrome
Pili multigemini
Pilonidal cyst
Pinta
PIRA
Pityriasis lichenoides...
Pityriasis lichenoides et...
Pityriasis rubra pilaris
Placental abruption
Pleural effusion
Pleurisy
Pleuritis
Plummer-Vinson syndrome
Pneumoconiosis
Pneumocystis jiroveci...
Pneumocystosis
Pneumonia, eosinophilic
Pneumothorax
POEMS syndrome
Poland syndrome
Poliomyelitis
Polyarteritis nodosa
Polyarthritis
Polychondritis
Polycystic kidney disease
Polycystic ovarian syndrome
Polycythemia vera
Polydactyly
Polymyalgia rheumatica
Polymyositis
Polyostotic fibrous...
Pompe's disease
Popliteal pterygium syndrome
Porencephaly
Porphyria
Porphyria cutanea tarda
Portal hypertension
Portal vein thrombosis
Post Polio syndrome
Post-traumatic stress...
Postural hypotension
Potophobia
Poxviridae disease
Prader-Willi syndrome
Precocious puberty
Preeclampsia
Premature aging
Premenstrual dysphoric...
Presbycusis
Primary biliary cirrhosis
Primary ciliary dyskinesia
Primary hyperparathyroidism
Primary lateral sclerosis
Primary progressive aphasia
Primary pulmonary...
Primary sclerosing...
Prinzmetal's variant angina
Proconvertin deficiency,...
Proctitis
Progeria
Progressive external...
Progressive multifocal...
Progressive supranuclear...
Prostatitis
Protein S deficiency
Protein-energy malnutrition
Proteus syndrome
Prune belly syndrome
Pseudocholinesterase...
Pseudogout
Pseudohermaphroditism
Pseudohypoparathyroidism
Pseudomyxoma peritonei
Pseudotumor cerebri
Pseudovaginal...
Pseudoxanthoma elasticum
Psittacosis
Psoriasis
Psychogenic polydipsia
Psychophysiologic Disorders
Pterygium
Ptosis
Pubic lice
Puerperal fever
Pulmonary alveolar...
Pulmonary hypertension
Pulmonary sequestration
Pulmonary valve stenosis
Pulmonic stenosis
Pure red cell aplasia
Purpura
Purpura, Schoenlein-Henoch
Purpura, thrombotic...
Pyelonephritis
Pyoderma gangrenosum
Pyomyositis
Pyrexiophobia
Pyrophobia
Pyropoikilocytosis
Pyrosis
Pyruvate kinase deficiency
Uveitis
Q
R
S
T
U
V
W
X
Y
Z
Medicines

History

Phenylketonuria was discovered by the Norwegian physician Ivar Asbjørn Følling, in 1934, when he noticed that hyperphenylalaninemia (HPA) was associated with mental retardation. In Norway this disorder is known as Følling's disease, named after its discoverer. Dr. Følling was one of the first physicians to apply detailed chemical analysis to the study of disease. His careful analysis of the urine of two retarded siblings led him to request many physicians near Oslo to test the urine of other retarded patients. This led to the discovery of the same substance that he had found in eight other patients. The substance found had to be subjected to much more basic and rudimentary chemical analysis than is available today. He tested and found that reactions gave rise to benzaldehyde and benzoic acid, which led him to conclude the compound contained a benzene ring. Further testing showed the melting point to be the same as phenylpyruvic acid which indicated that there was the substance in the urine. His careful science inspired many to pursue similar meticulous and painstaking research with other disorders.

Defects

Classical PKU is caused by a defective gene for the enzyme phenylalanine hydroxylase (PAH). It is inherited as an autosomal recessive trait. A rarer form of the disease occurs when PAH is normal but there is a defect in the biosynthesis or recycling of the cofactor tetrahydrobiopterin (BH4) by the patient.2

This enzyme normally converts the amino acid phenylalanine to tyrosine. If, due to a faulty or missing enzyme, this reaction does not take place, levels of phenylalanine in the body can be far higher than normal, and levels of tyrosine lower than normal.

Large neutral amino acid transporter

Large neutral amino acids (LNAAs), including phenylalanine, compete for transport across the blood brain barrier (BBB).3 Excessive phenylalanine in the blood saturates the large neutral amino acid transporter (LNAAT) which carries LNAAs across the BBB.3 Thus phenylalanine significantly decreases the levels of LNAAs in the brain. These amino acids are required for protein and neurotransmitter synthesis.3 Reduced protein and neurotransmitter synthesis disrupts brain development in children, leading to mental retardation.

Low levels of tyrosine also leads to lowered production of the pigment melanin, so children with this condition tend have fairer hair and greener eyes than other members of their family. The excess phenylalanine is converted instead into phenylketones, which are excreted in the urine - hence the name for this condition. The sweat and urine of an affected child has a musty odour due to these ketones.

Read more at Wikipedia.org


[List your site here Free!]


Tetrahydrobiopterin for mild phenylketonuria - Genetic Disease and Nutrition
From Nutrition Research Newsletter, 1/1/03

Hyperphenylalaninemia, a common inherited metabolic disease, is due to phenylalanine hydroxylase deficiency. Patients with both classic and mild phenylketonuria require lifelong dietary protein restriction to prevent neurologic sequelae and to ensure normal cognitive development, whereas patients with mild Hyperphenylalaninemia may not require treatment. The highly restricted diet that is required is associated with a risk of nutritional deficiencies and is difficult to follow. Therefore, a search for non-dietary treatment alternatives has been encouraged.

In approximately 50 genetic diseases of humans involving enzyme deficiencies, treatment with high doses of a cofactor can increase enzyme activity. Tetrahydrobiopterin is a natural cofactor of aromatic amino acid hydroxylases and nitric oxide synthase. Supplementation with this compound is an established treatment for the rare patients with hyperphenylalaninemia that is due to defects in the biosynthesis of tetrahydrobiopterin. A recent study in the New England Journal of Medicine prospectively studied children with phenylalanine hydroxylase deficiency in an effort to determine the frequency of sensitivity to tetrahydrobiopterin in these patients, whether tetrahydrobiopterin restores their oxidative capacity for phenylalanine and whether responsiveness to tetrahydrobiopterin is related to specific genotypes.

Thirty-eight children with various classes of hyperphenylalaninemia were included in this study. Phenylalanine loading was accomplished by having patients consume a meal containing 100 mg of phenylalanine per kilogram of body weight. One hour after the end of the meal the patients ingested 20 mg of tetrahydrobiopterin per kilogram and then blood phenylalanine levels were determined. The rate of phenylalanine oxidation was determined twice in each child, once without treatment and once during treatment with tetrahydrobiopterin.

In 27 of 31 patients with mild hyperphenylalaninemia (10 patients) or mild phenylketonuria (21 patients), tetrahydrobiopterin significantly lowered blood phenylalanine levels. Phenylalanine oxidation was significantly enhanced in 23 of these 31 patients. Conversely, none of the seven patients with classic phenylketonuria had a response to tetrahydrobiopterin as defined in this study. Long-term treatment with tetrahydrobiopterin in five children increased daily phenylalanine tolerance, allowing them to discontinue their restricted diets. Seven mutations were classified as probably associated with responsiveness to tetrahydrobiopterin and six mutations were classified as potentially associated.

Muntau presented two lines of evidence that the metabolic phenotype of phenylalanine hydroxylase deficiency can be modified by pharmacologic doses of tetrahydrobiopterin. First, tetrahydrobiopterin loading led to normal or nearly normal blood phenylalanine concentrations in most patients with residual phenylalanine hydroxylase activity, suggesting that responsiveness to tetrahydrobiopterin is a common feature of mild hyperphenylalaninemia phenotypes. Second, tetrahydrobiopterin enhanced residual phenylalanine oxidative capacity in these patient groups. Therefore, the findings suggest that the in vivo phenylalanine oxidation test can discriminate among classes of hyperphenylalaninemia of different severity.

Ania C. Muntau, Wulf Roschinger, Matthias Habich, et al., Tetrahydrobiopterin as an alternative treatment for mild phenylketonuria, N Engl J Med 347(26): 2122-2132 (December 26, 2002) [Address reprint requests to Dr. Roscher at Dr. von Hauner Children's Hospital Research Center, Ludwig Maximilians University, Lindwurmstrasse 2a, D-80337 Munich, Germany, or at adelbert.roscher@kkimed.uni-muenchen.de]

COPYRIGHT 2003 Frost & Sullivan
COPYRIGHT 2003 Gale Group

Return to Phenylketonuria
Home Contact Resources Exchange Links ebay