X-ray of Pneumocystis jiroveci pneumonia There is increased white (opacity) in the lower lungs on both sides, characteristic of Pneumocystis pneumonia
Find information on thousands of medical conditions and prescription drugs.

Pneumocystis jiroveci pneumonia

Pneumocystis jiroveci pneumonia or Pneumocystis pneumonia (PCP) is a form of pneumonia caused by a yeast-like fungal microorganism called Pneumocystis jiroveci (sometimes spelled jirovecii, formerly known as Pneumocystis carinii). It is relatively rare in people with normal immune systems but common among people with AIDS. PCP can also develop in patients who are taking immunosuppressant medications (e.g., patients who have undergone solid organ transplantion) and in patients who have undergone bone marrow transplantation. more...

Home
Diseases
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Arthritis
Arthritis
Bubonic plague
Hypokalemia
Pachydermoperiostosis
Pachygyria
Pacman syndrome
Paget's disease of bone
Paget's disease of the...
Palmoplantar Keratoderma
Pancreas divisum
Pancreatic cancer
Panhypopituitarism
Panic disorder
Panniculitis
Panophobia
Panthophobia
Papilledema
Paraganglioma
Paramyotonia congenita
Paraphilia
Paraplegia
Parapsoriasis
Parasitophobia
Parkinson's disease
Parkinson's disease
Parkinsonism
Paroxysmal nocturnal...
Patau syndrome
Patent ductus arteriosus
Pathophobia
Patterson...
Pediculosis
Pelizaeus-Merzbacher disease
Pelvic inflammatory disease
Pelvic lipomatosis
Pemphigus
Pemphigus
Pemphigus
Pendred syndrome
Periarteritis nodosa
Perinatal infections
Periodontal disease
Peripartum cardiomyopathy
Peripheral neuropathy
Peritonitis
Periventricular leukomalacia
Pernicious anemia
Perniosis
Persistent sexual arousal...
Pertussis
Pes planus
Peutz-Jeghers syndrome
Peyronie disease
Pfeiffer syndrome
Pharmacophobia
Phenylketonuria
Pheochromocytoma
Photosensitive epilepsy
Pica (disorder)
Pickardt syndrome
Pili multigemini
Pilonidal cyst
Pinta
PIRA
Pityriasis lichenoides...
Pityriasis lichenoides et...
Pityriasis rubra pilaris
Placental abruption
Pleural effusion
Pleurisy
Pleuritis
Plummer-Vinson syndrome
Pneumoconiosis
Pneumocystis jiroveci...
Pneumocystosis
Pneumonia, eosinophilic
Pneumothorax
POEMS syndrome
Poland syndrome
Poliomyelitis
Polyarteritis nodosa
Polyarthritis
Polychondritis
Polycystic kidney disease
Polycystic ovarian syndrome
Polycythemia vera
Polydactyly
Polymyalgia rheumatica
Polymyositis
Polyostotic fibrous...
Pompe's disease
Popliteal pterygium syndrome
Porencephaly
Porphyria
Porphyria cutanea tarda
Portal hypertension
Portal vein thrombosis
Post Polio syndrome
Post-traumatic stress...
Postural hypotension
Potophobia
Poxviridae disease
Prader-Willi syndrome
Precocious puberty
Preeclampsia
Premature aging
Premenstrual dysphoric...
Presbycusis
Primary biliary cirrhosis
Primary ciliary dyskinesia
Primary hyperparathyroidism
Primary lateral sclerosis
Primary progressive aphasia
Primary pulmonary...
Primary sclerosing...
Prinzmetal's variant angina
Proconvertin deficiency,...
Proctitis
Progeria
Progressive external...
Progressive multifocal...
Progressive supranuclear...
Prostatitis
Protein S deficiency
Protein-energy malnutrition
Proteus syndrome
Prune belly syndrome
Pseudocholinesterase...
Pseudogout
Pseudohermaphroditism
Pseudohypoparathyroidism
Pseudomyxoma peritonei
Pseudotumor cerebri
Pseudovaginal...
Pseudoxanthoma elasticum
Psittacosis
Psoriasis
Psychogenic polydipsia
Psychophysiologic Disorders
Pterygium
Ptosis
Pubic lice
Puerperal fever
Pulmonary alveolar...
Pulmonary hypertension
Pulmonary sequestration
Pulmonary valve stenosis
Pulmonic stenosis
Pure red cell aplasia
Purpura
Purpura, Schoenlein-Henoch
Purpura, thrombotic...
Pyelonephritis
Pyoderma gangrenosum
Pyomyositis
Pyrexiophobia
Pyrophobia
Pyropoikilocytosis
Pyrosis
Pyruvate kinase deficiency
Uveitis
Q
R
S
T
U
V
W
X
Y
Z
Medicines

Symptoms

Symptoms of PCP include high fever, non-productive cough, shortness of breath (especially on exertion), weight loss and night sweats. There is usually not a large amount of sputum with PCP unless the patient has an additional bacterial infection. The fungus can invade other visceral organs, such as the liver, spleen and kidney, but only in a minority of cases.

Diagnosis

The clinical diagnosis can be confirmed by the characteristic appearance of the chest x-ray which shows widespread pulmonary infiltrates, and an arterial oxygen level (pO2) strikingly lower than would be expected from symptoms. The diagnosis can be definitively confirmed by pathologic identification of the causative organism in induced sputum or bronchial washings obtained by bronchoscopy with coloration by toluidine blue or immunofluorescence assay.

PCP and AIDS

Because PCP rarely occurs without AIDS, it can be one of the first clues to a new AIDS diagnosis, though it does not generally occur unless the CD4 count is less than 200/mm³. An unusual rise in PCP cases in North America, noticed when physicians began requesting large quantities of the rarely used antibiotic pentamidine, was the first clue to the existence of AIDS in the early 1980s.

Prior to the development of more effective treatments, PCP was a common and rapid cause of death in AIDS patients. Much of the incidence of PCP has been reduced by instituting a standard practice of using oral trimethoprim/sulfamethoxazole to prevent the disease in people with CD4 counts less than 200/mm³. In populations that do not have access to preventative treatment, PCP continues to be a major cause of death in AIDS.

Treatments

Antipneumocystic medication is used with concomitant steroids in order to avoid inflammation, which causes an exacerbation of symptoms about four days after treatment begins if steroids are not used. By far the most commonly used medication is a combination of trimethoprim and sulfamethoxazole (co-trimoxazole, with the tradenames Bactrim, Septrin, or Septra), but some patients are unable to tolerate this treatment due to allergies. Other medications that are used, alone or in combination, include pentamidine, trimetrexate, dapsone, atovaquone, primaquine, and clindamycin. Treatment is usually for a period of about 21 days.

Nomenclature

The name P. jiroveci, to distinguish the organism found in humans from variants of Pneumocystis found in other animals, was first proposed in 1976, in honor of Otto Jirovec, who described Pneumocystis pneumonia in humans in 1952. After DNA analysis showed significant differences in the human variant, the proposal was made again in 1999 and has come into common use; P. carinii still describes the species found in rats. The International Code of Botanical Nomenclature would normally require the name to be spelled jirovecii rather than jiroveci; both spellings are currently in use.

Read more at Wikipedia.org


[List your site here Free!]


Sulfa resistance and dihydropteroate synthase mutants in recurrent pneumocystis carinii pneumonia - Dispatches
From Emerging Infectious Diseases, 7/1/03 by Aimable Nahimana

Failure of sulfa or sulfone prophylaxis is associated with mutations in Pneumocystis carinii gene coding for dihydropteroate synthase (DHPS). The DHPS genotype was analyzed in AIDS patients who had two separate episodes of P. carinii pneumonia. The results suggest that DHPS mutations can be selected de novo within patients by the pressure of a sulfa or sulfone drug.

**********

Co-trimoxazole, the antifolate drug combination of trimethoprim and sulfamethoxazole, is the drug of choice for the prophylaxis and treatment of Pneumocystis carinii pneumonia (PCP), a life-threatening disease in immunosuppressed patients. Trimethoprim is an inhibitor of dihydrofolate reductase, whereas sulfamethoxazole inhibits dihydropteroate synthase (DHPS). The antipneumocystis activity is believed to be due mainly to sulfamethoxazole (1). Dapsone is a sulfone drug, also frequently used, that targets DHPS. Widespread use of sulfa and sulfone drugs to prevent and treat PCP in recent years has correlated with an increase of the prevalence of mutations in the gene coding for DHPS (2,3). The most frequent DHPS mutations occur at nucleotide positions 165 and 171, which lead to an amino acid change at positions 55 (Thr to Ala) and 57 (Pro to Ser). These mutations are located in the sulfa-binding site and may appear as either a single or double mutation in the same isolate. Similar mutations in other microbial pathogens confer sulfa resistance (4,5). In P carinii, DHPS mutations are associated with failure of sulfa or sulfone prophylaxis (1,6) and decreased survival of the patient at 3 months after PCP (2). However, patients harboring P carinii types with DHPS mutations are most often successfully treated with high-dose co-trimoxazole (6). Because a standardized culture system for P. carinii does not exist, the level of sulfa resistance conferred by these mutations cannot be determined with in vitro susceptibility tests. A key issue is whether the recent emergence of DHPS mutations is a result of P carinii transmission between patients or arises from selection within patients by the pressure of a sulfa or sulfone drug, two possibilities that are not mutually exclusive. To investigate the latter possibility, we analyzed patients who had had two separate episodes of PCP.

The Study

P carinii DNA was extracted from bronchoalveolar lavage specimens by using the Qiamp Blood Kit (QIA-GEN GmbH, Hilden, Germany). Bronchoalveolar lavage specimens from 13 patients with recurrent PCP episodes were collected from four European hospitals (Lyon, France; Copenhagen, Denmark; Lausanne, Switzerland; and La Chaux-de-Fonds, Switzerland). To determine the prevalence of the different P. carinii molecular types, we analyzed bronchoalveolar lavage specimens from 310 PCP patients from two Swiss hospitals (Lausanne, 111 patients; Zurich, 64 patients) and Lyon's hospital (135 patients). Specific information on demographic and clinical characteristics, chemoprophylaxis, and treatment regimens were obtained from the medical charts. P. carinii infecting humans (now named P. jiroveci [7]) was typed by using the multilocus method developed in our laboratory as previously described (8-10). In this method, four variable regions of the P. carinii genome are amplified by polymerase chain reaction (PCR), followed by the detection of polymorphisms using single-strand conformation polymorphism (SSCP). AP carinii type is defined by a combination of four alleles corresponding to the four genomic regions. If a specimen harbored two alleles of one or more of the four genomic regions, the patient was considered to be co-infected with two or more P carinii types (9). This typing system has been validated and the stability of its markers assessed; its index of discriminatory power has been estimated to be 0.93 (10). The full length of the DHPS gene was amplified by PCR as described previously (1). PCR products (765 bp) were cloned, and both strands were sequenced (5 clones per sample). The five clones had identical sequences for all samples, except for those from patients 3 and 4, which contained a mixture of DHPS sequences.

Thirteen patients with two separate PCP episodes were analyzed (Table). All patients had recovered between episodes. The intervals between the episodes ranged from 4 to 25 months. All patients had AIDS and all, except patients 8 and 9, were men, with a median age of 35 (range 23-51) and median CD4 cell count of 9.5 cells/[micro]]L (range 0-98). Some patients were co-infected with two different P carinii types, as shown by PCR-SSCP multilocus typing method (patients 4, 5, 8, 11, and 13) or DHPS genotyping (patients 3 and 4). In seven (54%) patients (patients 1-7), the same PCR-SSCP type was observed in both episodes of PCP; six (46%) patients (patients 8-13) had different types in the first and second episodes. This rate of genotype switch is similar to that reported in previous studies, in which such a change was observed in approximately half of recurrent episodes (11-14). The importance of a genotype switch remains uncertain. Indeed, the switch might be due to a de novo infection or to the reactivation of a genotype not detected in the first episode because of the compartmentalization of different co-infecting P. carinii types in the lungs (15).

A second episode of PCP could result either from reactivation of organisms that caused the first episode or from de novo infection with a new P. carinii type acquired from an exogenous source. In seven patients (patients 1-7), reactivation was strongly suggested by the detection of identical SSCP types in both episodes of PCP. An alternative explanation could be de novo infection in the second episode by the same P. carinii PCR-SSCP type as that which caused the first episode. However, the prevalence of the types observed in the seven "reactivation" cases was low in Lyon and Switzerland during the study period (types no. 2, 5, and 7 represented 7%, 6%, and 10%, respectively, of Lyon's isolates; type 6 represented only 3.5% of the Swiss isolates [Figure]). Thus, reinfection with these specific types was unlikely. All Danish patients (1, 3, and 6) were infected with type 6. Although no prevalence data for SSCP genotypes in Denmark are available, no indication of possible contact between these patients, overlap in hospitalization dates, or similar zip codes for home address suggested transmission of type 6 between these patients.

[FIGURE OMITTED]

A change of P. carinii DHPS genotype between the two episodes was observed in three reactivation cases, either from wild type in the first episode to DHPS mutations in the second one (patients 1 and 5) or from DHPS with a single mutation (at position 57) in the first episode to a double mutation in the second one (patient 2). In two patients (3 and 4), the DHPS mutant strain was selected out of a mixture of wild-type and DHPS mutant strains. Because both episodes of each patient were caused by the same P carinii types and because all patients received co-trimoxazole or dapsone as treatment, maintenance therapy, or both, these results strongly suggest that selection of P. carinii DHPS mutations occurred within the patients. The results of tests on patients 3 and 4 isolates highlight the fact that some patients may harbor genetically different strains of P carinii and that the mutant strain may be readily selected when drug pressure is exerted. In the two remaining patients (6 and 7), the P. carinii DHPS mutant found in the bronchoalveolar lavage specimen from the second episode was already present in the first episode.

The wild-type DHPS allele was more frequently observed in the six reinfection cases than in the reactivation cases (8 wild-type alleles among 12 genotypes versus 4 among 16, Table). This finding is probably related to the fact that, with the exception of the second episode of patient 13, patients who were reinfected had no prophylaxis or did not receive sulfa drugs for prophylaxis.

In all the second episodes caused by reactivation, mutant DHPS strains were observed (7/7), compared to only two of six second episodes caused by reinfection (Table). This observation suggests an association between mutant DHPS and second episodes attributable to reactivation (p<0.02, Fisher exact test).

Conclusions

Our study suggests that P. carinii DHPS mutants may be selected in vivo (within a given patient) under the pressure of co-trimoxazole or dapsone and that DHPS mutations may be associated with reactivation of P. carinii. Whether DHPS mutations are induced by the pressure of the drug or preexisting and selected out by the pressure of the drug remains to be determined. Physicians should be alert to the increased risk for drug resistance during recurrence of PCP infection, although the impact of DHPS mutations on retreatment with sulfa or sulfone drugs remains to be determined. De novo selection of P. carinii DHPS strongly favors the hypothesis that P. carinii is developing sulfa and sulfone resistance.

Acknowledgments

We thank R. Lienhard for the samples he kindly provided and S. Picot for storage of the specimens. We also thank A. Telenti for critical reading of the manuscript, as well as J.L. Touraine, D. Peyramond, and C. Trepo for access to patients' charts in Lyon.

Financial support for this study was provided by the Swiss National Program on AIDS Research grant 3345- 65407, Swiss National Fund for Scientific Research grant 32-56715.99; Centre de Coordination de la Lutte contre les Infections Nosocomiales Sud-Est et Hospices Civils de Lyon; the Swiss Federal Office for Education and Science for participation in EUROCARINII project, Framework V Program, European Commission; and a North-South fellowship from Lausanne University (supporting A.N.).

References

(1.) Ma L, Borio L, Masur H, Kovacs H. Pneumocystis carinii dihydropteroate synthase but not dihydrofolate reductase gene mutations correlate with prior trimethoprim-sulfamethoxazole or dapsone use. J Infect Dis 1999;180:1969-78.

(2.) Helweg-Larsen J, Benfield TL, Eugen-Olsen J, Lundgren JD, Lundgren B. Effects of mutations in Pneumocystis carinii dihydropteroate synthase gene on outcome of AIDS-associated P. carinii pneumonia. Lancet 1999;354:1347-51.

(3.) Kazanjian P, Armstrong W, Hossler PA, Burman W, Richardson J, Lee CH, et al. Pneumocystis carinii mutations are associated with duration of sulfa or sulfone prophylaxis exposure in AIDS patients. J Infect Dis 2000;182:551-7.

(4.) Olliaro P. Mode of action and mechanisms of resistance for antimalarial drugs. Pharmacol Ther 2001;89:207-19.

(5.) Skold O. Sulfonamide resistance: mechanisms and trends. Drug Resist Updat 2001;32:1608-14.

(6.) Navin TR, Beard CB, Huang L, del Rio C, Lee S, Pieniazek NJ, et al. Effects of mutations in Pneumocystis carinii dihydropteroate synthase gene on outcome of P. carinii pneumonia in patients with HIV-1: a prospective study. Lancet 2001;358:545-9.

(7.) Stringer JR, Beard CB, Miller RF, Wakefield AE. A new name (Pneumocystis jiroveci) for Pneumocystis from humans. Emerg Infect Dis 2002;8:891-6.

(8.) Hauser PM, Francioli P, Bille J, Telenti A, Blanc DS. Typing of Pneumocystis carinii f. sp. hominis by single-strand conformation polymorphism of four genomic regions. J Clin Microbiol 1997;35:3086-91.

(9.) Nahimana A, Blanc DS, Francioli P, Bille J, Hauser PM. Typing of Pneumocystis carinii f. sp. hominis by PCR-SSCP to indicate a high frequency of co-infection. J Med Microbiol 2000;49:753-8.

(10.) Hauser PM, Blanc DS, Sudre P, Senggen Manoloff E, Nahimana A, Bille J, et al. Genetic diversity of Pneumocystis carinii in HIV-positive and negative patients as revealed by PCR-SSCP typing. AIDS 2001;15:461-6.

(11.) Tsolaki AG, Miller RF, Underwood AP, Banerji S, Wakefield AE. Genetic diversity at the internal transcribed spacer regions of the rRNA operon among isolates of Pneumocystis carinii from AIDS patients with recurrent pneumonia. J Infect Dis 1996;174:141-56.

(12.) Keely SP, Baughman RP, Smulian AG, Dohn MN, Stringer JR. Source of Pneumocystis carinii in recurrent episodes of pneumonia in AIDS patients. AIDS 1996; 10:881-8.

(13.) Keely SP, Stringer JR. Sequences of Pneumocystis carinii f. sp. hominis strains asssociated with recurrent pneumonia vary at multiple loci. J Clin Microbiol 1997;35:2745-7.

(14.) Hughes WT. Current issues in the epidemiology, transmission, and reactivation of Pneumocystis carinii. Semin Respir Infect 1998;13:283-8.

(15.) Helweg-Larsen J, Lundgren B, Lundgren JD. Heterogeneity and compartmentalization of Pneumocystis carinii f. sp. hominis genotypes in autopsy lungs. J Clin Microbiol 2001;39:3789-92.

Address for correspondence: Philippe M. Hauser, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland; fax: +41 21 314 40 60; email: Philippe.Hauser@chuv.hospvd.ch

Aimable Nahimana, * (1) Meja Rabodonirina, ([dagger]) Jannik Helweg-Larsen, ([double dagger]) Isabelle Meneau, * Patrick Francioli, * Jacques Bille, * and Philippe M. Hauser *

* Centre Hospitalier Oniversitaire Vaudois, Lausanne, Switzerland; ([dagger]) Universite Claude-Bernard, Lyon, France; and ([double dagger]) Hvidovre Hospital, Copenhagen, Denmark

(1) Aimable Nahimana contributed to the design of the study, analyzed the samples by polymerase chain reaction and DNA sequencing, and wrote the draft of the manuscript. Meja Rabodonirina and Jannik Helweg-Larsen reviewed medical charts and provided bronchoalveolar lavage specimens. All authors contributed to the analysis of data and writing of the paper. Philippe M. Hauser initiated and supervised all aspects of the study.

Dr. Nahimana obtained his bachelor's degree and master's degree in microbiology at the University of Lausanne. The present work was submitted by A. Nahimana as partial fulfillment for a PhD degree at the University of Lausanne and was performed under the supervision of P. Hauser.

COPYRIGHT 2003 U.S. National Center for Infectious Diseases
COPYRIGHT 2003 Gale Group

Return to Pneumocystis jiroveci pneumonia
Home Contact Resources Exchange Links ebay