Find information on thousands of medical conditions and prescription drugs.

Trisomy

Aneuploidy is a chromosomal state where abnormal numbers of specific chromosomes or chromosome sets exist within the nucleus. more...

Home
Diseases
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
Candidiasis
Tachycardia
Taeniasis
Talipes equinovarus
TAR syndrome
Tardive dyskinesia
Tarsal tunnel syndrome
Tay syndrome ichthyosis
Tay-Sachs disease
Telangiectasia
Telangiectasia,...
TEN
Teratoma
Teratophobia
Testotoxicosis
Tetanus
Tetraploidy
Thalassemia
Thalassemia major
Thalassemia minor
Thalassophobia
Thanatophobia
Thoracic outlet syndrome
Thrombocytopenia
Thrombocytosis
Thrombotic...
Thymoma
Thyroid cancer
Tick paralysis
Tick-borne encephalitis
Tietz syndrome
Tinnitus
Todd's paralysis
Topophobia
Torticollis
Touraine-Solente-Golé...
Tourette syndrome
Toxic shock syndrome
Toxocariasis
Toxoplasmosis
Tracheoesophageal fistula
Trachoma
Transient...
Transient Global Amnesia
Transposition of great...
Transverse myelitis
Traumatophobia
Treacher Collins syndrome
Tremor hereditary essential
Trichinellosis
Trichinosis
Trichomoniasis
Trichotillomania
Tricuspid atresia
Trigeminal neuralgia
Trigger thumb
Trimethylaminuria
Triplo X Syndrome
Triploidy
Trisomy
Tropical sprue
Tropophobia
Trypanophobia
Tuberculosis
Tuberous Sclerosis
Tularemia
Tungiasis
Turcot syndrome
Turner's syndrome
Typhoid
Typhus
Tyrosinemia
U
V
W
X
Y
Z
Medicines

A change in the number of chromosomes leads to a chromosomal disorder. These changes can occur during the formation of reproductive cells (eggs and sperm) or in early fetal development. In humans the most common form of aneuploidy is trisomy, or the presence of an extra chromosome in each cell. Monosomy, or the loss of one chromosome from each cell, is another kind of aneuploidy.

Aneuploidy is common in cancerous cells. Molecular biologist Peter Duesberg has proposed that it may even be the cause of, and not a symptom of, most cancers (PMID 15085930). This view is still hypothetical, but is increasingly respected by mainstream cancer researchers.

Disomy

A disomy is the presence of a pair of chromosomes, or the normal amount for some organisms including humans. It is not a disorder, or aneuploid, but is the absence of aneuploidism.

Trisomy

A trisomy is the presence of three, instead of the normal two, chromosomes of a particular numbered type in an organism. Thus the presence of an extra chromosome 21 is called trisomy 21. Most trisomies, like most other abnormalities in chromosome number, result in distinctive birth defects. Many trisomies result in miscarriage or death at an early age.

A partial trisomy occurs when part of an extra chromosome is attached to one of the other chromosomes. A mosaic trisomy is a condition where extra chromosomal material exists in only some of the organism's cells.

While a trisomy can occur with any chromosome, few babies survive to birth with most trisomies. The most common types that survive without spontaneous abortion in humans are:

  • Trisomy 21 (Down syndrome)
  • Trisomy 18 (Edward's syndrome)
  • Trisomy 13 (Patau syndrome)
  • Trisomy 9
  • Trisomy 8 (Warkany syndrome 2)

Trisomy involving sex chromosomes includes:

  • XXX (Triple X syndrome)
  • XXY (Klinefelter's syndrome)
  • XYY (XYY syndrome)

Monosomy

Monosomy is the presence of only one chromosome from a pair in a cell's nucleus. Monosomy is a type of aneuploidy. Partial monosomy occurs when the long or short arm of a chromosome is missing.

Human genetic disorders arising from monosomy are:

  • X0 (Turner syndrome)
  • cri du chat syndrome -- a partial monosomy caused by a deletion of the end of the short (p) arm of chromosome 5

Sources

This article incorporates public domain text from The U.S. National Library of Medicine.

Read more at Wikipedia.org


[List your site here Free!]


Homocysteine concentrations in adults with trisomy 21: effect of B vitamins and genetic polymorphisms
From Alternative Medicine Review, 3/1/05 by N. Fillon-Emery

Fillon-Emery N, Chango A, Mircher C, et al. Am J Clin Nutr 2004;80:1551-1557.

BACKGROUND: The effects of supplementation with B vitamins and of common polymorphisms in genes involved in homocysteine metabolism on plasma total homocysteine (tHcy) concentrations in trisomy 21 are unknown. OBJECTIVES: We aimed to determine the effects of orally administered folic acid and of folic acid combined with vitamin B-12, vitamin B-6, or both on tHcy in adults with trisomy 21. The study was also intended to analyze the possible influence of gene polymorphisms. DESIGN: One hundred sixty adults with trisomy 21 and 160 healthy, unrelated subjects aged 26 +/- 4 y were included. Plasma tHcy, red blood cell folate, serum folate, and vitamin B-12 were measured. Genotyping for the common methylenetetr ahydrofolate reductase (MTHFR) 677C-->T, MTHFR 1298A-->C, cystathionine beta-synthase 844Ins68, methionine synthase 2756A-->C, methionine synthase reductase 66A-->G, and reduced folate carrier 80G-->A polymorphisms was carried out. RESULTS: The mean tHcy concentration (9.8 +/- 0.7 micromol/L) of cases who did not use vitamins was not significantly different from that of controls (9.4 +/- 0.3 micromol/L). Plasma tHcy concentrations (7.6 +/- 0.3 mmol/L) in cases who used folic acid were significantly lower than in cases who did not. Folic acid combined with vitamin B-12 did not significantly change tHcy concentrations compared with those in cases who used only folic acid. Folic acid combined with vitamins B-6 and B-12 significantly lowered tHcy (6.5 +/- 0.5 micromol/L). The difference in tHcy according to MTHFR genotype was not significant. However, tHcy concentrations were slightly higher in TT homozygotes among the controls but not among the cases. CONCLUSION: This study provides information on the relation between several polymorphisms in genes involved in homocysteine and folate metabolism in adults with trisomy 21.

COPYRIGHT 2005 Thorne Research Inc.
COPYRIGHT 2005 Gale Group

Return to Trisomy
Home Contact Resources Exchange Links ebay