Find information on thousands of medical conditions and prescription drugs.

Acid maltase deficiency

Glycogen storage disease type II (also called Pompe disease or acid maltase deficiency) is a rare genetic disorder caused by a deficiency in the enzyme acid alpha-glucosidase (GAA), which is needed to break down glycogen, a stored form of sugar used for energy. It is the only glycogen storage disease with a defect in lysosomal metabolism, and was the first glycogen storage disease to be identified—in 1932. more...

Home
Diseases
A
Aagenaes syndrome
Aarskog Ose Pande syndrome
Aarskog syndrome
Aase Smith syndrome
Aase syndrome
ABCD syndrome
Abdallat Davis Farrage...
Abdominal aortic aneurysm
Abdominal cystic...
Abdominal defects
Ablutophobia
Absence of Gluteal muscle
Acalvaria
Acanthocheilonemiasis
Acanthocytosis
Acarophobia
Acatalasemia
Accessory pancreas
Achalasia
Achard syndrome
Achard-Thiers syndrome
Acheiropodia
Achondrogenesis
Achondrogenesis type 1A
Achondrogenesis type 1B
Achondroplasia
Achondroplastic dwarfism
Achromatopsia
Acid maltase deficiency
Ackerman syndrome
Acne
Acne rosacea
Acoustic neuroma
Acquired ichthyosis
Acquired syphilis
Acrofacial dysostosis,...
Acromegaly
Acrophobia
Acrospiroma
Actinomycosis
Activated protein C...
Acute febrile...
Acute intermittent porphyria
Acute lymphoblastic leukemia
Acute lymphocytic leukemia
Acute mountain sickness
Acute myelocytic leukemia
Acute myelogenous leukemia
Acute necrotizing...
Acute promyelocytic leukemia
Acute renal failure
Acute respiratory...
Acute tubular necrosis
Adams Nance syndrome
Adams-Oliver syndrome
Addison's disease
Adducted thumb syndrome...
Adenoid cystic carcinoma
Adenoma
Adenomyosis
Adenosine deaminase...
Adenosine monophosphate...
Adie syndrome
Adrenal incidentaloma
Adrenal insufficiency
Adrenocortical carcinoma
Adrenogenital syndrome
Adrenoleukodystrophy
Aerophobia
Agoraphobia
Agrizoophobia
Agyrophobia
Aicardi syndrome
Aichmophobia
AIDS
AIDS Dementia Complex
Ainhum
Albinism
Albright's hereditary...
Albuminurophobia
Alcaptonuria
Alcohol fetopathy
Alcoholic hepatitis
Alcoholic liver cirrhosis
Alektorophobia
Alexander disease
Alien hand syndrome
Alkaptonuria
Alliumphobia
Alopecia
Alopecia areata
Alopecia totalis
Alopecia universalis
Alpers disease
Alpha 1-antitrypsin...
Alpha-mannosidosis
Alport syndrome
Alternating hemiplegia
Alzheimer's disease
Amaurosis
Amblyopia
Ambras syndrome
Amelogenesis imperfecta
Amenorrhea
American trypanosomiasis
Amoebiasis
Amyloidosis
Amyotrophic lateral...
Anaphylaxis
Androgen insensitivity...
Anemia
Anemia, Diamond-Blackfan
Anemia, Pernicious
Anemia, Sideroblastic
Anemophobia
Anencephaly
Aneurysm
Aneurysm
Aneurysm of sinus of...
Angelman syndrome
Anguillulosis
Aniridia
Anisakiasis
Ankylosing spondylitis
Ankylostomiasis
Annular pancreas
Anorchidism
Anorexia nervosa
Anosmia
Anotia
Anthophobia
Anthrax disease
Antiphospholipid syndrome
Antisocial personality...
Antithrombin deficiency,...
Anton's syndrome
Aortic aneurysm
Aortic coarctation
Aortic dissection
Aortic valve stenosis
Apert syndrome
Aphthous stomatitis
Apiphobia
Aplastic anemia
Appendicitis
Apraxia
Arachnoiditis
Argininosuccinate...
Argininosuccinic aciduria
Argyria
Arnold-Chiari malformation
Arrhythmogenic right...
Arteriovenous malformation
Arteritis
Arthritis
Arthritis, Juvenile
Arthrogryposis
Arthrogryposis multiplex...
Asbestosis
Ascariasis
Aseptic meningitis
Asherman's syndrome
Aspartylglycosaminuria
Aspergillosis
Asphyxia neonatorum
Asthenia
Asthenia
Asthenophobia
Asthma
Astrocytoma
Ataxia telangiectasia
Atelectasis
Atelosteogenesis, type II
Atherosclerosis
Athetosis
Atopic Dermatitis
Atrial septal defect
Atrioventricular septal...
Atrophy
Attention Deficit...
Autoimmune hepatitis
Autoimmune...
Automysophobia
Autonomic dysfunction
Familial Alzheimer disease
Senescence
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Medicines

The build-up of glycogen causes progressive muscle weakness throughout the body and affects various body tissues, particularly in the heart, skeletal muscles, liver and nervous system. Transmission is by autosomal recessive inheritance. Children have a 1 in 4 chance of inheriting the disease when both parents carry the abnormal gene. It is estimated to occur in about 1 in 40,000 births.

Variants

Pompe disease has three forms defined by age of onset and progression of symptoms:

Infantile, or early onset, is noticed shortly after birth. Symptoms include severe lack of muscle tone, weakness, and enlarged liver and heart. Mental function is not affected. Development appears normal for the first weeks or months but slowly declines as the disease progresses. Swallowing may become difficult and the tongue may protrude and become enlarged. Most children die from respiratory or cardiac complications before 2 years of age.

Juvenile onset symptoms appear in early to late childhood and include progressive weakness of respiratory muscles in the trunk, diaphragm and lower limbs, as well as exercise intolerance. Intelligence is normal. Most patients do not live beyond the second or third decade of life.

Adult onset symptoms also involve generalized muscle weakness and wasting of respiratory muscles in the trunk, lower limbs, and diaphragm. Many patients report respiratory distress, headache at night or upon waking, diminished deep tendon reflexes, and proximal muscle weakness, such as difficulty in climbing stairs. Intellect is not affected. A small number of adult patients live without major symptoms or limitations

Treatment

Cardiac and respiratory complications are treated symptomatically. Physical and occupational therapy may be beneficial for some patients. Alterations in diet may provide temporary improvement but will not alter the course of the disease. Genetic counseling can provide families with information regarding risk in future pregnancies.

Prognosis

The prognosis for individuals with Pompe disease varies according to the onset and severity of symptoms. The disease is particularly lethal in infants and young children.

Read more at Wikipedia.org


[List your site here Free!]


Pathologic quiz case: A man with exertion-induced cramps and myoglobinuria-pathologic diagnosis: McArdle disease (glycogenosis Type V or myophosphorylase
From Archives of Pathology & Laboratory Medicine, 9/1/03 by Getachew, Eskender

A 51-year-old man had a long-standing history of recurrent exertion-induced cramps and myoglobinuria. While growing up, he had never been able to participate in sports requiring excessive physical activity. In the past, exertion had brought on a sensation of muscle cramps, but more recently this cramping sensation had begun to come on without warning. Recently, after squatting to work on his son's go-cart, he experienced excessive cramps in his legs without warning on standing, and within 30 minutes he had dark-colored urine. He has been unable to work for the past 2 years. His past medical history is significant for multiple hospitalizations for rhabdomyolysis, diabetes, hepatitis C, and psoriasis. A muscle biopsy performed 27 years ago was interpreted as showing changes consistent with muscular dystrophy.

A physical examination revealed protrusion of his right scapula with arm extension and mild axillary/pectoral creases. Mild proximal weakness (4+/5) was present in all limbs. Muscle tone was normal, and there was no hypertrophy. He could stand with his arms crossed but had difficulty doing toe and heel walking. Deep tendon reflexes were normal. Extensor responses were absent.

A biopsy of the left rectus femoris muscle was performed. There was mild variation in muscle fiber size and occasional small, primarily subsarcolemmal vacuoles (Figure 1), which were negative for acid phosphatase. Myophosphorylase staining was weaker for the affected muscle (Figure 2, A) compared with normal muscle (Figure 2, B). Electron microscopic examination revealed scattered muscle fibers with increased glycogen material, corresponding to the vacuoles observed by light microscopy (Figure 3). Mitochondria were normal in configuration and number.

What is your diagnosis?

Pathologic Diagnosis: McArdle Disease (Glycogenosis Type V or Myophosphorylase Deficiency)

McArdle disease, which was initially described in 1951, was the first metabolic myopathy recognized as being due to the deficiency of a single enzyme, myophosphorylase.1,2 Myophosphorylase activity is required to convert glycogen to glucose-1-phosphate and eventually to lactate. McArdle disease is an autosomal recessive disorder, but sporadic, apparently nonfamilial cases have been reported.1,3

Patients with this condition typically present with exercise intolerance that with continued exertion can lead to muscle cramps, rhabdomyolysis, myoglobinuria, and, in severe cases, renal failure.4 Most patients do not manifest the condition until the second or third decade of life, and the disease course is often slowly progressive.3,4 During childhood and the teenage years, manifestations may be mild, consisting largely of easy fatigability and muscle cramps. As the affected individual ages, there is a marked decline in muscle function. Persistent weakness and wasting of individual muscle groups may become apparent.3,4 The degree of disability can be assessed by an ischemic exercise test and lactate acid evaluation, used as a screening test.5 In individuals with normal enzyme levels, there is usually an increase in lactic acid after ischemic exercise of the forearm. This response is lacking in individuals with a total absence of myophosphorylase. However, in patients with a partial deficiency, the response is normal. Therefore, lactic acid test results do not provide enough information for an unequivocal diagnosis of McArdle disease.5 Laboratory tests typically reveal an increase in resting serum creatine kinase. A clinical impression of McArdle disease should be confirmed by skeletal muscle biopsy and assay or staining for myophosphorylase.1

Muscle biopsies from affected individuals are characterized by the subsarcolemmal accumulation of normal-appearing glycogen.1,6,7 The subsarcolemmal accumulation of glycogen forms vacuoles or blebs that can be identified by light microscopy. In many of the vacuoles, glycogen can be detected by the perodic acid-Schiff reaction (diastase digestible). Subsarcolemmal spaces that appear empty can be demonstrated by staining with nicotinamide adenine dinucleotide in its reduced form (NADH tetrazolium reductase).7 Scattered degenerating muscle fibers may be present. Ultrastructurally, increased glycogen accumulation corresponding to the vacuoles observed by light microscopy is evident. Scattered or widespread fibers may not stain for myophosphorylase; however, some staining may be observed in patients with a partial deficiency.5

Vacuolar myopathic changes are associated with various disorders.7 Vacuoles may serve as a depot for fat, glycogen, or other storage materials. In general, the glycogenoses are indistinguishable from one another by routine light microscopic and ultrastructural evaluation, with the notable exception of acid maltase, in which large vacuoles are associated with lysosomes (acid phosphatase positive). Specific enzyme analyses are important in making a precise diagnosis. Other causes of vacuolar myopathy, such as inclusion body myositis, periodic paralysis, and certain drug reactions, can usually be readily distinguished by paying attention to clinical features, consistent pathologic findings, and ultrastructural appearance.

The gene for myophosphorylase has been cloned, sequenced, and assigned to chromosome 11q13.8 The molecular basis of McArdle disease has been linked to several mutations.8,9 Muscle phosphorylase is totally absent in the majority of patients and markedly decreased in a few patients. When assessed at the level of transcription, some affected individuals produce no detectable message or an abnormal message, whereas others produce a messenger RNA of apparently normal size, which either may not be translated or may be translated into an inactive or unstable protein.6,7

References

1. Korenyi-Both A, Smith BH, Baruah JK. McArdle's syndrome. Fine structural changes in muscle. Acta Neuropathol. 1977;40:11-19.

2. Schmid R, Hammaker L. Hereditary absence of muscle phosphorylase (McArdle's disease). N Eng J Med 1961;264:223-225.

3. Felice KJ, Schneebaum AB, Jones HR Jr. McArdle's disease with late-onset symptoms: case report and review of the literature. J Neurol Neurosurg Psychiatry. 1992;55:407-408.

4. Beynon RJ, Bartram C, Hopkins P, et al. McArdle's disease: molecular genetics and metabolic consequences of the phenotype. Muscle Nerve. 1995;3:S18-S22.

5. Fattah SM, Rubulis A, Falloon WW. McArdle's disease: metabolic studies in a patient and review of the syndrome. Am J Med. 1970;48:693-699.

6. Martinuzzi A, Schievano G, Nascimbeni A, Fanin M. McArdle's disease: the unsolved mystery of the reappearing enzyme. Am J Pathol. 1999;154:1893-1897.

7. Banker BQ, Engel AG. Basic reaction of muscle. In: Engel AG, Franzini-Armstrong C, eds. Myology. Vol 1. 2nd ed. New York, NY: McGraw-Hill; 1994:856-877.

8. Tsujino S, Shansk S, Nonaka I, DiMauro S. The molecular genetic basis of myophosphorylase deficiency (McArdle's disease). Muscle Nerve. 1995;3:S23-S27.

9. Vogerd M, Grehl T, Jager M, et al. Creatine therapy in myophosphorylase deficiency (McArdle disease): a placebo-controlled crossover trial. Arch Neurol. 2000;57:956-963.

Eskender Getachew, MD; Richard A. Prayson, MD

Accepted for publication March 5, 2003.

From the Department of Neurology, Cleveland Clinic Hospital, Weston, Fla (Dr Getachew), and Department of Anatomic Pathology, Cleveland Clinic Foundation, Cleveland, Ohio (Dr Prayson).

Corresponding author: Richard A. Prayson, MD, Department of Anatomic Pathology (L25), Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland OH 44195 (e-mail: praysor@cesmtp.ccf.org).

Reprints not available from the author.

Copyright College of American Pathologists Sep 2003
Provided by ProQuest Information and Learning Company. All rights Reserved

Return to Acid maltase deficiency
Home Contact Resources Exchange Links ebay