Find information on thousands of medical conditions and prescription drugs.

Ataxia telangiectasia

Ataxia-telangiectasia (AT) (Boder-Sedgwick syndrome or Louis-Bar syndrome) is a primary immunodeficiency disorder that occurs in an estimated incidence of 1 in 40,000 to 1 in 300,000 births (Lederman, 2000). Telangiectasias are small, red 'spider' veins. These typically appear on the surface of the ears and cheeks or in the corners of the eyes in patients with AT. The 'ataxia' part of the name refers to the difficulty patients with AT have walking. At early age, the child's walking becomes wobbley, at teens handicapped-bound and at the early 20s, it becomes fatal. more...

Home
Diseases
A
Aagenaes syndrome
Aarskog Ose Pande syndrome
Aarskog syndrome
Aase Smith syndrome
Aase syndrome
ABCD syndrome
Abdallat Davis Farrage...
Abdominal aortic aneurysm
Abdominal cystic...
Abdominal defects
Ablutophobia
Absence of Gluteal muscle
Acalvaria
Acanthocheilonemiasis
Acanthocytosis
Acarophobia
Acatalasemia
Accessory pancreas
Achalasia
Achard syndrome
Achard-Thiers syndrome
Acheiropodia
Achondrogenesis
Achondrogenesis type 1A
Achondrogenesis type 1B
Achondroplasia
Achondroplastic dwarfism
Achromatopsia
Acid maltase deficiency
Ackerman syndrome
Acne
Acne rosacea
Acoustic neuroma
Acquired ichthyosis
Acquired syphilis
Acrofacial dysostosis,...
Acromegaly
Acrophobia
Acrospiroma
Actinomycosis
Activated protein C...
Acute febrile...
Acute intermittent porphyria
Acute lymphoblastic leukemia
Acute lymphocytic leukemia
Acute mountain sickness
Acute myelocytic leukemia
Acute myelogenous leukemia
Acute necrotizing...
Acute promyelocytic leukemia
Acute renal failure
Acute respiratory...
Acute tubular necrosis
Adams Nance syndrome
Adams-Oliver syndrome
Addison's disease
Adducted thumb syndrome...
Adenoid cystic carcinoma
Adenoma
Adenomyosis
Adenosine deaminase...
Adenosine monophosphate...
Adie syndrome
Adrenal incidentaloma
Adrenal insufficiency
Adrenocortical carcinoma
Adrenogenital syndrome
Adrenoleukodystrophy
Aerophobia
Agoraphobia
Agrizoophobia
Agyrophobia
Aicardi syndrome
Aichmophobia
AIDS
AIDS Dementia Complex
Ainhum
Albinism
Albright's hereditary...
Albuminurophobia
Alcaptonuria
Alcohol fetopathy
Alcoholic hepatitis
Alcoholic liver cirrhosis
Alektorophobia
Alexander disease
Alien hand syndrome
Alkaptonuria
Alliumphobia
Alopecia
Alopecia areata
Alopecia totalis
Alopecia universalis
Alpers disease
Alpha 1-antitrypsin...
Alpha-mannosidosis
Alport syndrome
Alternating hemiplegia
Alzheimer's disease
Amaurosis
Amblyopia
Ambras syndrome
Amelogenesis imperfecta
Amenorrhea
American trypanosomiasis
Amoebiasis
Amyloidosis
Amyotrophic lateral...
Anaphylaxis
Androgen insensitivity...
Anemia
Anemia, Diamond-Blackfan
Anemia, Pernicious
Anemia, Sideroblastic
Anemophobia
Anencephaly
Aneurysm
Aneurysm
Aneurysm of sinus of...
Angelman syndrome
Anguillulosis
Aniridia
Anisakiasis
Ankylosing spondylitis
Ankylostomiasis
Annular pancreas
Anorchidism
Anorexia nervosa
Anosmia
Anotia
Anthophobia
Anthrax disease
Antiphospholipid syndrome
Antisocial personality...
Antithrombin deficiency,...
Anton's syndrome
Aortic aneurysm
Aortic coarctation
Aortic dissection
Aortic valve stenosis
Apert syndrome
Aphthous stomatitis
Apiphobia
Aplastic anemia
Appendicitis
Apraxia
Arachnoiditis
Argininosuccinate...
Argininosuccinic aciduria
Argyria
Arnold-Chiari malformation
Arrhythmogenic right...
Arteriovenous malformation
Arteritis
Arthritis
Arthritis, Juvenile
Arthrogryposis
Arthrogryposis multiplex...
Asbestosis
Ascariasis
Aseptic meningitis
Asherman's syndrome
Aspartylglycosaminuria
Aspergillosis
Asphyxia neonatorum
Asthenia
Asthenia
Asthenophobia
Asthma
Astrocytoma
Ataxia telangiectasia
Atelectasis
Atelosteogenesis, type II
Atherosclerosis
Athetosis
Atopic Dermatitis
Atrial septal defect
Atrioventricular septal...
Atrophy
Attention Deficit...
Autoimmune hepatitis
Autoimmune...
Automysophobia
Autonomic dysfunction
Familial Alzheimer disease
Senescence
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Medicines

AT is characterized by progressive cerebellar ataxia, oculocutaneous telangiectasia, progressive cerebellar dysfunction, and recurrent sinopulmonary infections secondary to progressive immunological and neurological dysfunction (Boder, 1958). AT patients are significantly predisposed to cancer, particularly lymphomas and leukemia. Other manifestations of the disease include sensitivity to ionizing radiation (Taylor et al., 1975), premature aging, and hypogonadism (Regueiro et al., 2000). AT has been a major interest of scientists since the 1960's because it may yield an insight into numerous other major health problems, such as cancer, neurological disease, immunodeficiency, and aging (Lederman, 2000).

The responsible gene in AT, ataxia-telangiectasia mutated (ATM), was discovered in 1995 by Savitsky et al., a team led by Yosef Shiloh of Tel Aviv University in Israel. Researchers linked the hyper-sensitivity of AT patients to ionizing radiation (IR) and predisposition to cancer to "chromosomal instability, abnormalities in genetic recombination, and defective signaling to programmed cell death and several cell cycle checkpoints activated by DNA damage"; (Canman, 1998). Earlier observations predicted that the gene altered in AT played a role in DNA damage recognition. These predictions were confirmed when a single gene on chromosome 11 (11q 22-23) was discovered (Savitsky et al., 1995, Gatti et al., 1982). Since its discovery, the protein product of the ATM gene has been shown to be a part of eukaryotic cell cycle control, DNA repair, and DNA recombination (Lavin, 2004).

Read more at Wikipedia.org


[List your site here Free!]


Cancer gene scores a mouse knockout - mice with inability to synthesize protein coded by ATM gene may help researchers understand the fatal condition of
From Science News, 8/3/96

Small, infertile, beset with neurological problems, and prone to deadly cancer within their first few months of life, the mice in Anthony Wynshaw- Boris' laboratory at the National Center for Human Genome Research in Bethesda, Md., are an unenviable lot. When subjected to ionizing radiation, the mice die from cancer much more readily than normal mice. The sad state of these rodents stems from their inability to synthesize the protein encoded by a gene called ATM.

Children who have mutations in both their copies of the human version of this gene suffer from a fatal condition called ataxia-telangiectasia, marked in its early stages by slurred speech and involuntary movements. Those afflicted also run a higher than normal risk of cancer.

The knockout mice, so called because their ATM genes have been knocked out by scientists, suffer problems remarkably similar to those of humans with ataxia-telangiectasia, note Wynshaw-Boris and his colleagues in the July 12 Cell. As a result, the researchers expect that studying the mutant mice will help them understand the function of the protein encoded by the ATM gene.

Previous studies suggest it plays a role in repairing damaged DNA.

"The fact that we have a good model will also allow us to test a lot of things that might [alleviate] ataxia-telangiectasia. We can try more speculative therapies on a mouse than we would dare try on humans," says Wynshaw-Boris.

Some research has suggested that carriers of ataxia-telangiectasia, who have one mutant copy and one normal copy of the ATM gene, may be more vulnerable to cancer, particularly breast cancer. The investigators are therefore looking also at mice with only one mutant copy of the ATM gene. "If there's an increased risk of cancer, we would hope to see it in our mice," says Wynshaw-Boris. Though none of these mice have developed tumors so far, investigators caution that they have followed the animals for only a few months.

COPYRIGHT 1996 Science Service, Inc.
COPYRIGHT 2004 Gale Group

Return to Ataxia telangiectasia
Home Contact Resources Exchange Links ebay