Diclofenac chemical structure
Find information on thousands of medical conditions and prescription drugs.

Voltaren

Diclofenac (marketed as Voltaren®, Voltarol® and Cataflam®) is a non-steroidal anti-inflammatory drug (NSAID) taken to reduce inflammation, such as in arthritis or acute injury. It can also be used to reduce menstrual pain. more...

Home
Diseases
Medicines
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
Hydrocodone
Vagifem
Valaciclovir
Valcyte
Valganciclovir
Valine
Valium
Valnoctamide
Valproate semisodium
Valproic acid
Valpromide
Valrelease
Valsartan
Valstar
Valtrex
Vancenase
Vanceril
Vancomycin
Vaniqa
Vanticon
Vecuronium bromide
Velcade
Velivet
Venlafaxine
Ventolin
Vepesid
Verapamil
Verelan
Vermox
Versed
Vfend
Viadur
Viagra
Vicoprofen
Vidarabine
Vidaza
Videx
Vigabatrin
Viloxazine
Vinblastine
Vincristine
Vinorelbine
Viomycin
Vioxx
Viracept
Viread
Visine
Vistide
Visudyne
Vitaped
Vitrase
Vivelle
Volmax
Voltaren
Voriconazole
Vosol
W
X
Y
Z

Voltaren and Voltarol contain the sodium salt of diclofenac. In the United Kingdom Voltarol can be supplied with either the sodium salt or potassium salt, while Cataflam in some other countries is the potassium salt only. Diclofenac is available in stomach acid resistant formulations (25 and 50 mg), fast disintegrating oral formulations (50 mg), slow- and controlled-release forms (75, 100 or 150 mg), suppositories (50 and 100 mg), and injectable forms (50 and 75 mg). Diclofenac is also available over the counter (OTC) in some countries: Voltaren® dolo (12.5 mg diclofenac as potassium salt) in Switzerland and Germany, and preparations with 25 mg diclofenac are OTC in New Zealand. OTC use is approved for minor aches and pains and fever associated with common infections.

Diclofenac is available as a generic drug in a number of formulations.

Mechanism of action

The exact mechanism of action is not entirely known, but it is thought that the primary mechanism responsible for its anti-inflammatory/antipyretic/analgesic action is inhibition of prostaglandin synthesis by inhibition of cyclooxygenase (COX).

Diclofenac, it seems, may also be a unique member of the NSAIDs. There is some evidence that diclofenac inhibits the lipooxygenase pathways, thus reducing formation of the leukotrienes (also pro-inflammatory autacoids). There is also speculation that diclofenac may inhibit phospholipase A2 as part of its mechanism of action. These additional actions may explain the high potency of diclofenac - it is the most potent NSAID on a molar basis.

Inhibition of COX also decreases prostaglandins in the epithelium of the stomach, making it more sensitive to corrosion by gastric acid. This is also the main side effect of diclofenac. Diclofenac has a low to moderate preference to block the COX2-isoenzyme (approximately 10-fold) and is said to have therefore a somewhat lower incidence of gastrointestinal complaints than noted with indomethacin and aspirin.

The action of one single dose is much longer (6 to 8 hours) than the very short half-life of the drug indicates. This could partly be due to a particular high concentration achieved in synovial fluids.

Common uses

Diclofenac is used for musculoskeletal complaints, especially arthritis (rheumatoid arthritis, osteoarthritis, spondylarthritis, ankylosing spondylitis), gout attacks, and pain management in case of kidney stones and gallstones. An additional indication is the treatment of acute migraines. Diclofenac is used commonly to treat mild to moderate post-operative or post-traumatic pain, particular when inflammation is also present, and is effective against menstrual pain.

Read more at Wikipedia.org


[List your site here Free!]


Tackling ocular allergies
From Optometric Management, 2/1/03 by Gupta, Deepak

allergy update

HONE YOUR SKILLS FOR DIAGNOSING AND MANAGIN OCULAR ALLERGIES BY FOLLOWING THESE SIMPLE GUIDELINES.

Allergic conjunctivitis is one of the most frequently occuring ocular conditions that optometrists see. Consumers purchase roughly 40 million bottles of over-the-counter (OTC) anti-allergic eye dorps each year and another 4 million in prescription drops. Did you know that 90% of allergy patients self-diagnose and self-medicate their condition? This is unfortunate because we have vastly superior prescription medications to help these ptients better manage their condition.

The first step toward serving our allergy suffers better is to understand the pathology of the disease. I'll review this topic and discuss the clinical management of ocular allergies.

Pathogenesis of ocular allergy

When most people think of ocular allergies, they think of seasonal allergic conjunctivitis (SAC). Most patients suffering from SAC are usually bothered during the spring and early fall. A variant of this condition, called perennial allergic conjunctivitis (PAC), affects patients indoors and all year long. I'll discuss these two forms of ocular allergy in more detail later.

Two rarer and more severe forms of allergic conjunctivitis (atopic keratoconjunctivitis [AKC] and vernal keratoconjunctivitis [VKC]) also exist. But because the vast majority of what we typically see are SAC and PAC, I'll limit my discussion to these two forms.

Learning about SAC & PAC

The immunopathogenesis of SAC is a type-I hypersensitivity IgE-mediated reaction with the mast cell as the most important cellular player. The same is true for PAC and the progression of both conditions is as follows:

> The patient experiences sensitization to environmental allergens. He develops no symptoms, but the IgE molecule binds to receptors on sensitized mast cells and basophils in a way that prepares them for future allergen exposure.

> When future allergen contact happens, within seconds, degranulation of the mast cells occurs, leading to the release of a wide assortment of inflammatory mediators. The most important of these is histamine, but so are prostaglandins, leukotrienes and cytokines. This is the early phase of ocular allergies.

> The late phase begins hours after the initial activation and involves additional inflammatory cells. Eosinophils, neutrophils, basophils and T lymphocytes infiltrate the conjunctival mucosa. Recurrence and prolongation of symptoms are a result of a variety of mediators released by these additional inflammatory cells.

In the following sections, I'll discuss how to manage ocular allergies with different medications.

Reviewing OTC allergy drugs

OTC ocular allergy drugs such as Opcon-A, Visine-A and Naphcon-A contain an H1-receptor antihistamine (either antazoline or pheniramine) and a vasoconstrictor (either naphazoline or tetrahydrozaline). The antihistamine component competitively blocks the Hi receptors on the nocioceptive type-C nerves of the mucosal membranes.

The result is a significant decrease in ocular itching but little effect on ocular redness or swelling. The vasoconstrictor component works on the conjunctival blood vessels to decrease redness. The problem with these OTC drops are manifold:

> Many patients complain that their eyes sting, burn and tear upon instillation.

> OTC drops have a duration of action of two hours, but are recommended for use q.i.d. That only covers eight hours of relief.

> Chronic use of these drops often leads to tachyphylaxis, rebound conjunctivitis and a permanent loss of ocular vessel tone.

These problems are a main reason why we should use the following prescription anti-allergy drugs for our patients. The drugs listed in the following categories are more effective and carry less adverse effects.

Understanding antihistamines

Two common topical antihistamines are emedastine difumarate (Emadine) and levocabastine HCl (Livostin). These compounds are primarily Hl-receptor antagonists, which help relieve redness and itching.

Because their duration of action is three to four hours, patients must use them q.i.d. They have little impact on other proinflammatory mediators, such as prostaglandins and leukotrienes, so they have minimal effect on conjunctival swelling. They are best used for the mild allergy sufferer who doesn't respond to artificial tears.

Managing predictable attacks

Medications such as pemirolast potassium (Alamast), cromolyn sodium (Crolom), lodoxamide tromethamine (Alomide) and nedocromil sodium (Alocril) prevent mast cell degranulation by interfering with a critical calcium intake step that occurs after antigen-antibody binding. By interfering with the calcium intake, the medicine blocks the release of histamine and stalls the allergic process.

Mast cell stabilizers don't relieve existing symptoms of allergy; they prevent them from occurring. This works well in a patient who has a seasonal, predictable history of allergies where you see him several weeks before the anticipated onset of symptoms and start him on the drops prophylactically. They don't work well if a patient's allergy isn't limited to discrete, predictable attacks.

Combining benefits

Dual-acting compounds such as olopatadine HCI (Patanol), ketotifen fumarate (Zaditor) and azelastine HCl (Optivar) combine the quick response of antihistamines with the prolonged action of mast cell stabilizers. This is a considerable advantage over mast cell stabilizers that do nothing for the immediate needs of the allergy sufferer. It's also better than topical antihistamines, which do nothing for the delayed response of ocular allergies.

Of the drugs in this category, olopatadine has the broadest range of approvals while ketotifen has the longest duration of action - 12 hours. Although both olopatadine and azelastine are indicated for b.i.d. dosing, their duration of action is only eight hours.

Azelastine is described as a mast cell stabilizer as well as an antihistamine, but this statement hasn't been confirmed in human studies. In addition, olopatadine and ketotifen show a positive effect on rhinitis and sinusitis in combination allergy sufferers. It's proposed that this effect is caused by the draining of topical ocular anti-allergic medications through the nasolacrimal duct to the inferior turbinate of the nose. This is beneficial for patients who have watery eyes and runny noses.

Not-so-novel NSAIDs

Nonsteroidal anti-inflammatory drugs (NSAIDs) such as ketorolac tromethamine (Acular) and diclofenac sodium (Voltaren) decrease the production of prostaglandins and thromboxane by inhibiting the cyclooxygenase pathway.

By inhibiting this pathway, NSAIDs help alleviate patient complaints of itchiness and conjunctival swelling with minimal effect on ocular redness.

The main problems with prescribing NSAIDs is that patients must take them q.i.d. (so compliance becomes an issue) and they can delay corneal wound healing. O.D.s rarely use NSAIDs to treat seasonal allergy anymore because of newer, more effective medications.

Topical corticosteroids

Steroids are often used for severe and chronic forms of allergy (such as VKC, AKC and allergic giant papillary conjunctivitis). Steroids act by blocking a vital enzyme in the arachidonic acid pathway of prostaglandin and leukotriene synthesis. Their clinical use in ocular allergies is usually limited to patients who don't respond to other treatments.

When prescribing this class (which includes loteprednol etabonate [Alrex], rimexolone [Vexol], fluorometholone [FML] and prednisolone acetate [PredForte]), prescribe the steroid first to decrease symptoms and then switch over to a combination mast cell stabilizer/antihistamine.

The safety and efficacy profile of loteprednol usually makes it the steroid of choice, although you can safely use the others for short time periods.

The skinny on oral meds

The more popular drugs include diphenhydramine HCI (Benadryl), fexofenadine HCI (Allegra), loratadine (Claritin) and cetirizine HCl (Zyrtec). Many patients think that the oral anti-allergy medications are stronger, but be forewarned. These drugs inhibit muscarinic receptors, leading to mucosal dryness. A dry eye with a defective tear film offers less protection against the allergens and pollutants.

Thus, oral antihistamines may actually exacerbate ocular allergies by lowering the defense offered by a healthy tear film. If your patient has complaints only dealing with his eyes and you have him on systemic medication, consider a change.

Scanning the future

The development of new agents is ongoing. A new formulation of olopatadine with a higher concentration to maximize efficacy and increased duration of action will be introduced in early 2003. Early studies indicate that this drug might be efficacious with oncedaily dosing.

For example, Allergan has presented clinical studies with its new histamine blocker, epinastine. EV131 (Evolutec, Ltd.), a novel histamine-binding protein with anti-inflammatory properties should enter clinical trials by the end of the year.

Research is ongoing for the development of leukotriene blockers, new generation prostaglandin blockers such as COX-2 inhibitors, adhesion molecule blockers and binding proteins. With our present selection of anti-allergy medicine, combined with those awaiting future release, we shouldn't have a hard time diagnosing and treating ocular allergies.

Our knowledge of available drugs, their benefits and their downfalls, will make our patients happier and they'll appreciate us more than they do the results they get from self medicating.

By DEEPAK GUPTA, O.D. Stamford, Conn.

Dr. Gupta has no financial interests in any of the companies or products mentioned in this arti

cle. You can reach him at deegup4919@hotmail.com.

Copyright Boucher Communications, Inc. Feb 2003
Provided by ProQuest Information and Learning Company. All rights Reserved

Return to Voltaren
Home Contact Resources Exchange Links ebay