Chemical structure of tetramethrin.
Find information on thousands of medical conditions and prescription drugs.

Tetramethrin

Tetramethrin is a potent synthetic insecticide in the pyrethroid family. It is a white crystalline solid with a melting point of 65-80 °C. The commercial product is a mixture of stereoisomers.

Home
Diseases
Medicines
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
Oxytetracycline
Phentermine
Tacrine
Tacrolimus
Tagamet
Talbutal
Talohexal
Talwin
Tambocor
Tamiflu
Tamoxifen
Tamsulosin
Tao
Tarka
Taurine
Taxol
Taxotere
Tazarotene
Tazobactam
Tazorac
Tegretol
Teicoplanin
Telmisartan
Temazepam
Temocillin
Temodar
Temodar
Temozolomide
Tenex
Teniposide
Tenoretic
Tenormin
Tenuate
Terazosin
Terbinafine
Terbutaline
Terconazole
Terfenadine
Teriparatide
Terlipressin
Tessalon
Testosterone
Tetrabenazine
Tetracaine
Tetracycline
Tetramethrin
Thalidomide
Theo-24
Theobid
Theochron
Theoclear
Theolair
Theophyl
Theophyl
Theostat 80
Theovent
Thiamine
Thiomersal
Thiopental sodium
Thioridazine
Thorazine
Thyroglobulin
Tiagabine
Tianeptine
Tiazac
Ticarcillin
Ticlopidine
Tikosyn
Tiletamine
Timolol
Timoptic
Tinidazole
Tioconazole
Tirapazamine
Tizanidine
TobraDex
Tobramycin
Tofranil
Tolazamide
Tolazoline
Tolbutamide
Tolcapone
Tolnaftate
Tolterodine
Tomoxetine
Topamax
Topicort
Topiramate
Tora
Toradol
Toremifene
Tracleer
Tramadol
Trandate
Tranexamic acid
Tranxene
Tranylcypromine
Trastuzumab
Trazodone
Trenbolone
Trental
Trest
Tretinoin
Triacetin
Triad
Triamcinolone
Triamcinolone hexacetonide
Triamterene
Triazolam
Triclabendazole
Triclosan
Tricor
Trifluoperazine
Trilafon
Trileptal
Trimetazidine
Trimethoprim
Trimipramine
Trimox
Triprolidine
Triptorelin
Tritec
Trizivir
Troglitazone
Tromantadine
Trovafloxacin
Tubocurarine chloride
Tussionex
Tylenol
Tyrosine
U
V
W
X
Y
Z

Read more at Wikipedia.org


[List your site here Free!]


I(ca(TTX)) channels are distinct from those generating the classical cardiac Na(+) current
From Biophysical Journal, 11/1/01 by Chen-Izu, Ye

ABSTRACT The Na+ current component I^sub Ca(TTX)^ is functionally distinct from the main body of Na+ current, I^sub Na^. It was proposed that I^sub Ca(TTX)^ channels are I^sub Na^. channels that were altered by bathing media containing Ca^sup 2+^, but no, or very little, Na+. It is known that Na+-free conditions are not required to demonstrate I^sub Ca(TTX)^. We show here that Ca^sup 2+^ is also not required. Whole-cell, tetrodotoxin-blockable currents from fresh adult rat ventricular cells in 65 mm Cs+ and no Ca^sup 2+^ were compared to those in 3 mM Ca^sup 2+^ and no Cs+ (i.e., I^sub Ca(TTX)^). I^sub Ca(TTX)^ parameters were shifted to more positive voltages than those for Cs+. The Cs+ conductance-voltage curve slope factor (mean, -4.68 mV; range, -3.63 to -5.72 mV, eight cells) is indistinguishable from that reported for I^sub Ca(TTX)^ (mean, -4.49 mV; range, -3.95 to -5.49 mV). Cs+ current and I^sub Ca(TTX)^ time courses were superimposable after accounting for the voltage shift. Inactivation time constants as functions of potential for the Cs+ current and I^sub Ca(TTX)^ also superimposed after voltage shifting, as did the inactivation curves. Neither of the proposed conditions for conversion of I^sub Na^ into I^sub Ca(TTX)^ channels is required to demonstrate I^sub Ca(TTX)^. Moreover, we find that cardiac Na+ (H1) channels expressed heterologously in HEK 293 cells are not converted to I^sub Ca(TTX)^ channels by Na+-free, Ca^sup 2+^-containing bathing media. The gating properties of the Na+ current through H1 and those of Ca^sup 2+^ current through Hi are identical. All observations are consistent with two non-interconvertable Na+ channel populations: a larger that expresses little Ca^sup 2+^ permeability and a smaller that is appreciably Ca^sup 2+^-permeable.

REFERENCES

Aggarwal, R., S. R. Shorofsky, L. Goldman, and C. W. Balke. 1997. Tetrodotoxin blockable calcium currents in rat ventricular myocytes: a third type of cardiac cell sodium current. J. PhysioL 505:353-369.

Akaike, hi., and K. Takahashi. 1992. Tetrodotoxin-sensitive calcium-- conducting channels in the rat hippocampal CAI region. J. Physiol. 450:529-546.

Balke, C. W., and W. G. Wier. 1992. Modulation of L-type calcium channels by sodium ions. Proc. Natl. Acad. Sci. U.S.A. 89:4417-4421.

Brown, A. M., K. S. Lee, and T. Powell. 1981. Sodium current in single rat heart muscle cells. J. Physiol. 318:479-500.

Cachelin, A. B., J. E. DePeyer, S. Kokubun, and H. Reuter. 1983. Sodium channels in cultured cardiac cells. J. Physiol. 340:389-401.

Chandler, W. K., and H. Meves. 1965. Voltage clamp experiments on internally perfused giant axons. J. PhysioL 180:788-820.

Chen, S., H. A. Hartmann, and G. E. Kirsch. 1997. Cysteine mapping in the ion selectivity and toxin binding region of the cardiac Na+ channel pore. J. Membr. BioL 155:11-25.

Chen-Izu, Y., S. R. Shorofsky, W. G. Wier, L. Goldman, and C. W. Balke. 2001. ICa(ITI, and classical Na+ channels are distinct. Biophys. J. 80:A188.

Cole, W., C. D. Chartier, M. Martin, and N. Leblanc. 1997. Ca" permeation through Na+ channels in guinea pig ventricular myocytes. Am. J. Physiol. 273:H128-HI37.

Gaughan, J. P., S. Furukawa, and S. R. Houser. 1999. Tetrodotoxin-- sensitive calcium current, induces contraction in failed human ventricular myocytes. Circulation. 100:1-422.

Grant, A., V. S. Chauhan, R. Chandra, and C. F. Starmer. 1999. The human cardiac sodium channel retains its high sodium selectivity during beta-adrenergic stimulation. Biophys. J. 76:A80.

Guatimosim, S., E. A. Sobie, J. S. Cruz, L. A. Martin, and W. J. Lederer. 2001. Molecular identification of a TTX-sensitive Ca2+ current. Am. J. Physiol. 280:01327-01339.

Heubach, J. F., A. Kohler, E. Wettwer, and U. Ravens. 2000. T-type and tetrodotoxin-sensitive Ca 21 currents coexists in guinea pig ventricular myocytes and are both blocked by mibefradil. Circ. Res. 86:628-635.

Ju, Y. K., D. A. Saint, and P. W. Gage. 1994. Inactivation-resistant channels underlying the persistent sodium current in rat ventricular myocytes. Proc. Roy. Soc. Lond. B. 256:163-168.

Kambouris, N. G., H. B. Nuss, D. C. Johns, E. Marb,Sn, G. F. Tomaselli, and J. R. Balser. 2000. A revised view of cardiac sodium channel "blockade" in the long-QT syndrome. J. Clin. Invest. 105:1133-1140.

Kunze, D. L., A. E. Lacerda, D. L. Wilson, and A. M. Brown. 1985. Cardiac Na currents and the inactivation, reopening and waiting properties of single cardiac Na+ channels. J. Gen. Physiol. 86:691-719.

Kurata, Y., R. Sato, I. Histome, and S. Imanishi. 1999. Mechanisms of cation permeation in cardiac sodium channels: description by dynamic pore model. Biophys. J. 77:1885-1904.

Lemaire, S., C. Piot, J. Seguin, J. Nargeot, and S. Richard. 1995. Tetrodotoxin-sensitive Ca^sup 2+^ and Ba 21 currents in human atrial cells. Receptors Channels. 3:71-81.

Meves, H., and W. Vogel. 1973. Calcium inward currents in internally perfused giant axons. J. Physiol. 235:225-265.

Mitchell, M. R., T. Powell, D. A. Terrar, and V. W. Twist. 1983. Characteristics of the second inward current in cells isolated from rat ventricular muscle. Proc. Roy Soc. Lond. B. 219:447-469.

Nuss, H. B., and E. Marbin. 1999. Whether "slip-mode conductance" occurs. Science. 284:711A.

Santana, L. F., A. M. Gomez, and W. J. Lederer. 1998. Ca2+ flux through promiscuous cardiac Na+ channels: slip-mode conductance. Science. 279:1027-1033.

Stanley, B. E., and H. A. Fozzard. 1987. Low conductance sodium channels in canine cardiac Purkinje cells. Biophys. J. 52:489-495.

Sheets, M. F., B. E. Stanley, D. A. Hauck, J. C. Makelski, and H. A. Fozzard. 1987. Open sodium channel properties of single canine cardiac Purkinje cells. Biophys. J. 52:13-22.

Ten Eick, R., J. Yeh, and M. Matsuki. 1984. Two types of voltage dependent Na+ channels suggested by differential sensitivity of single channels to tetrodotoxin. Biophys. J. 45:70-73.

Townsend, C., H. A. Hartmann, and R. Horn. 1997. Anomalous effect of permeant ion concentration on peak open probability of cardiac Na+ channels. J. Gen. Physiol. 110:11-21.

Yamamoto, D., J. Z. Yeh, and T. Narahashi. 1984. Voltage-dependent calcium block of normal and tetramethrin-modified single sodium channel. Biophys. J. 45:337-343.

Zilberter, Y. L, C. F. Starmer, J. Starobin, and A. 0. Grant. 1994. Late Na+ channels in cardiac cells: the physiological role of background Na+ channels. Biophys. J. 67:153-160.

Ye Chen-Izu,* Qun Sha,* Stephen R. Shorofsky,* Shawn W. Robinson,* W. Gil Wier,^ L. Goldman,^ and C. William Balke*^

Departments of *Medicine and ^Physiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201 USA

Received for publication 9 February 2001 and in final form 19 July 2001.

Address reprint requests to: C. William Balke, M.D., Department of Physiology, University of Maryland School of Medicine, Howard Hall, Room 525, 660 West Redwood Street, Baltimore, MD 21201-1541. Tel.: 410-706-0515; Fax: 410-706-8610; E-mail: bbalke@medicine. umaryland.edu.

Copyright Biophysical Society Nov 2001
Provided by ProQuest Information and Learning Company. All rights Reserved

Return to Tetramethrin
Home Contact Resources Exchange Links ebay