Trifluoperazine chemical structure
Find information on thousands of medical conditions and prescription drugs.

Trifluoperazine

Trifluoperazine (Eskazinyl®, Eskazine®, Jatroneural®, Modalina®, Stelazine®, Terfluzine®) is a typical antipsychotic drug of the phenothiazine group. Trifluoperazine is a highly potent drug (approx. 20-times more potent than Chlorpromazine). more...

Home
Diseases
Medicines
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
Oxytetracycline
Phentermine
Tacrine
Tacrolimus
Tagamet
Talbutal
Talohexal
Talwin
Tambocor
Tamiflu
Tamoxifen
Tamsulosin
Tao
Tarka
Taurine
Taxol
Taxotere
Tazarotene
Tazobactam
Tazorac
Tegretol
Teicoplanin
Telmisartan
Temazepam
Temocillin
Temodar
Temodar
Temozolomide
Tenex
Teniposide
Tenoretic
Tenormin
Tenuate
Terazosin
Terbinafine
Terbutaline
Terconazole
Terfenadine
Teriparatide
Terlipressin
Tessalon
Testosterone
Tetrabenazine
Tetracaine
Tetracycline
Tetramethrin
Thalidomide
Theo-24
Theobid
Theochron
Theoclear
Theolair
Theophyl
Theophyl
Theostat 80
Theovent
Thiamine
Thiomersal
Thiopental sodium
Thioridazine
Thorazine
Thyroglobulin
Tiagabine
Tianeptine
Tiazac
Ticarcillin
Ticlopidine
Tikosyn
Tiletamine
Timolol
Timoptic
Tinidazole
Tioconazole
Tirapazamine
Tizanidine
TobraDex
Tobramycin
Tofranil
Tolazamide
Tolazoline
Tolbutamide
Tolcapone
Tolnaftate
Tolterodine
Tomoxetine
Topamax
Topicort
Topiramate
Tora
Toradol
Toremifene
Tracleer
Tramadol
Trandate
Tranexamic acid
Tranxene
Tranylcypromine
Trastuzumab
Trazodone
Trenbolone
Trental
Trest
Tretinoin
Triacetin
Triad
Triamcinolone
Triamcinolone hexacetonide
Triamterene
Triazolam
Triclabendazole
Triclosan
Tricor
Trifluoperazine
Trilafon
Trileptal
Trimetazidine
Trimethoprim
Trimipramine
Trimox
Triprolidine
Triptorelin
Tritec
Trizivir
Troglitazone
Tromantadine
Trovafloxacin
Tubocurarine chloride
Tussionex
Tylenol
Tyrosine
U
V
W
X
Y
Z

Pharmakokinetics

Little is known about human pharmacokinetics. One study has the following results: A study of the pharmacokinetics of trifluoperazine as a single 5-mg dose by mouth in 5 healthy subjects. Peak plasma concentrations of trifluoperazine were reached from 1.5 to 4.5 hours after ingestion and varied widely between subjects, ranging from 0.53 to 3.09 ng per mL. Elimination of trifluoperazine was multiphasic; the mean elimination half-life was estimated to be 5.1 hours over the period from 4.5 to 12 hours after ingestion, while the mean apparent terminal elimination half-life was estimated to be 12.5 hours

Uses

The primarary indication of trifluoperazine is schizophrenia. Its use in many parts of the world has declined because of highly frequent and severe early and late (tardive dyskinesia) extrapyramidal symptoms. The annual development rate of tardive dyskinesia may be as high as 4%.

Side Effects

Also, all side-effects of chlorpromazine may occur. These are sedative, hypotensive, anticholinergic/sympatholytic and allergic-toxic ones. A partiular severe form of liver damage has been reported. Therefore, preexisting liver damage is a clear contraindication.

Formulations

In the past, trifluoperazine was used in fixed combinations with the MAO inhibitor (antidepressant) tranylcypromine to attenuate the strong stimulating effects of this antidepressant. This combination was sold under the brand name Jatrosom®. Likeweise a combination with amobarbital (strong sedative/hypnotic agent) for the amelioration of psychoneurosis and insomnia existed under the brand name Jalonac®. Both combinations are not available any longer.

The drug is sold as tablet, liquid and 'Trifluperazine-injectable USP' for deep IM short-term use.


Read more at Wikipedia.org


[List your site here Free!]


Quaternary structure built from subunits combining NMR and small-angle X-Ray scattering data
From Biophysical Journal, 8/1/02 by Mattinen, Maija-Liisa

ABSTRACT A new principle in constructing molecular complexes from the known high-resolution domain structures joining data from NMR and small-angle x-ray scattering (SAXS) measurements is described. Structure of calmodulin in complex with trifluoperazine was built from N- and C-terminal domains oriented based on residual dipolar couplings measured by NMR in a dilute liquid crystal, and the overall shape of the complex was derived from SAXS data. The residual dipolar coupling data serves to reduce angular degrees of freedom, and the small-angle scattering data serves to confine the translational degrees of freedom. The complex built by this method was found to be consistent with the known crystal structure. The study demonstrates how approximate tertiary structures of modular proteins or quaternary structures composed of subunits can be assembled from high-resolution structures of domains or subunits using mutually complementary NMR and SAXS data.

INTRODUCTION

We are indebted to Andrea Hounslow and Clare Treritt for advice and assistance.

This work was supported by the Academy of Finland and Technology Agent of Finland (TEKES).

REFERENCES

Al-Hashimi, H. M., H. Valafar, M. Terrell, E. R. Zartler, M. K. Eidsness, and J. H. Prestegard. 2000. Variation of molecular alignment as a means of resolving orientational ambiguities in protein structures from dipolar couplings. J. Magn. Reson. 143:402-406.

Barbato, G., M. Ikura, L. E. Kay, R. W. Pastor, and A. Bax. 1992. Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry. 31:5269-5278.

Bastiaan, E. W., C. MacLean, P. C. M. van Zijl, and A. A. Bothner-By. 1987. High resolution NMR of liquids and gases: effects of magnetic-- field-induced molecular alignment. Annu. Rep. NMR Spectrosc. 9:35-77.

Bax, A., G. Kontaxis, and N. Tjandra. 2001. bipolar couplings in macromolecular structure determination. Methods Enzymol. 339:127-174.

Biekofsky, R. R., F. W. Muskett, J. M. Schmidt, S. R. Martin, J. P. Browne, P. M. Bayley, and J. Feeney. 1999. NMR approaches for monitoring domain orientations in calcium-binding proteins in solution using partial replacement of Ca^sup 2+^ by Tb^sup 3+^. FEBS Lett. 460:519-526.

Chacon, P., F. Moran, J. F. Diaz, E. Pantos, and J. M. Andreu. 1998. Low-resolution structures of proteins in solution retrieved from x-ray scattering with a genetic algorithm. Biophys. J. 74:2760-2775.

Chattopadhyaya, R., W. E. Meador, A. R. Means, and F. A. Quiocho. 1992. Calmodulin structure refined at 1.7 A resolution. J. MoL Biol. 228: 1177-1192.

Chou, J. J., S. Li, C. B. Klee, and A. Bax. 2001. Solution structure of Ca(2+)-calmodulin reveals flexible hand-like properties of its domains. Nat. Struct. BioL 8:990-997.

Clore, G. M. 2000. Accurate and rapid docking of protein-protein complexes on the basis of intermolecular nuclear Overhauser enhancement data and dipolar couplings by rigid body minimization. Proc. Natl. Acad. Sci. U.S.A. 97:9021-9025.

Clore, G. M., and A. M. Gronenborn. 1998. NMR structure determination of proteins and protein complexes larger than 20 kDa. Curr. Opin. Chem. Biol. 2:564-570.

Clore, G. M., A. M. Gronenborn, and A. Bax. 1998. A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information. J. Magn. Reson. 133:216-221.

Cook, W. J., L. J. Walter, and M. R. Walter. 1994. Drug binding by calmodulin: crystal structure of a calmodulin-trifluoperazine complex. Biochemistry. 33:15259-15265.

Cordier, F., A. J. Dingley, and S. Grzesiek. 1999. A doublet-separated sensitivity-enhanced HSQC for the determination of scalar and dipolar one-bond J-couplings. J. Biomol. NMR. 13:175-180.

Craven, C. J., B. Whitehead, S. K. Jones, E. Thulin, G. M. Blackburn, and J. P. Waltho. 1996. Complexes formed between calmodulin and the antagonists J-8 and TFP in solution. Biochemistry. 35:10287-10299.

Doniach, S. 2001. Changes in biomolecular conformation seen by small angle x-ray scattering. Chem. Rev. 101:1763-1778.

Feigin, L. A., and D. I. Svergun. 1987. Structure Analysis by Small-Angle X-Ray and Neutron Scattering. Plenum Press, New York.

Glatter, O., and 0. Kratky. 1982. Small Angle X-Ray Scattering. Academic Press, New York.

Hansen, M. R., L. Mueller, and A. Pardi. 1998. Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat. Struct. Biol. 5:1065-1074.

Heidorn, D. B., P. A. Seeger, S. E. Rokop, D. K. Blumenthal, A. R. Means, H. Crespi, and J. Trewhella. 1989. Changes in the structure of calmodulin induced by a peptide based on the calmodulin-binding domain of myosin light chain kinase. Biochemistry. 28:6757-6764.

Heidorn, D. B., and J. Trewhella. 1988. Comparison of the crystal and solution structures of calmodulin and troponin C. Biochemistry. 27: 909-915.

Ikura, M., G. Barbato, C. B. Kleem, and A. Bax. 1992b. Solution structure of calmodulin and its complex with a myosin light chain kinase fragment. Cell Calcium. 13:391-400.

Ikura, M., G. M. Clore, A. M. Gronenborn, G. Zhu, C. B. Klee, and A. Bax. 1992a. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science. 256:632-638.

Koch, M. H. J., and H. B. Stuhrmann. 1979. Neutron scattering studies of ribosomes. Methods Enzymol. 59:670-706.

Koradi, R., M. Billeter, and K. Wuthrich. 1996. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14: 51-55.

Losonczi, J. A., M. Andrec, M. W. Fischer, and J. H. Prestegard. 1999. Order matrix analysis of residual dipolar couplings using singular value decomposition. J. Magn. Reson. 138:334-342.

Matsushima, N., N. Hayashi, Y. Jinbo, and Y. Izumi. 2000. Ca 21 -bound calmodulin forms a compact globular structure on binding four trifluoperazine molecules in solution. Biochem. J. 347:211-215.

Meador, W. E., A. R. Means, and F. A. Quiocho. 1992. Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science. 257:1251-1255.

Meiler, J., J. J. Prompers, W. Peti, C. Griesinger, and R. Bruschweiler. 2001. Model-free approach to the dynamic interpretation of residual

dipolar couplings in globular proteins. J. Am. Chem. Soc. 123: 6098-60107.

Miller, J. J., G. Damaschun, and H. Schrauber. 1990. The highly resolved excess electron distance distribution of biopolymers in solution: calculation from intermediate-angle x-ray scattering and interpretation. J. Appl. Crystallogr. 23:26-34.

Osawa, M., M. B. Swindells, J. Tanikawa, T. Tanaka, T. Mase, T. Furuya, and M. Ikura. 1998. Solution structure of calmodulin-W-7 complex: the basis of diversity in molecular recognition. J. Mol. Biol. 276:165-176.

Osawa, M., H. Tokumitsu, M. B. Swindells, H. Kurihara, M. Orita, T. Shibanuma, T. Furuya, and M. Ikura. 1999. A novel target recognition revealed by calmodulin in complex with Caz+-calmodulin-dependent kinase kinase. Nat. Struct. BioL 6:819-824.

Ottiger, M., and A. Bax. 1999. Bicelle-based liquid crystals for NMR-- measurement of dipolar couplings at acidic and basic pH values. J. Biomol. NMR. 13:187-191.

Ottiger, M., F. Delaglio, and A. Bax. 1998. Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J. Magn. Reson. 131:373-378.

Permi, P., and A. Annila. 2000. Transverse relaxation optimised spectroscopy for measurement of residual dipolar couplings from twodimensional ("N,'H] correlation spectra. J. Biomol. NMR. 16:221-227.

Permi, P., P. R. Rosewear, and A. Annila. 2000. A Set of HNCO-TROSY based experiments for measurement of scalar and dipolar couplings. J. Biomol. NMR. 17:43-54.

Pervushin, K., R. Riek, G. Wider, and K. WUthrich. 1997. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. U.S.A. 94:12366-12371.

Salzmann, M., K. Pervushin, G. Wider, H. Senn, and K. Wuthrich. 1998. TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc. NatL Acad. Sci. U.S.A. 95:13585-13590.

Sanders, C. R., B. J. Hare, K. P. Howard, and J. H. Prestegard. 1994. Magnetically-oriented phospholipid micelles as a tool for the study of membrane-associated molecules. Prog. Nuclear Magn. Reson. Spectrosc. 26:421-444.

Shao, I., and D. Tu. 1995. The Jacknife and Bootstrap. Springer-Verlag, New York.

Skrynnikov, N. R., and L. E. Kay. 2000. Assessment of molecular structure using frame-independent orientational restraints derived from residual dipolar couplings. J. Biomol. NMR. 18:239-252.

Stuhrmann, H. B. 1970. Ein neues Verfahren zur Bestimmung der Oberflachenform and der inneren Struktur von gelosten globularen Proteinen aus Rontgenkleinwinkelmessungen. Z Physik. Chem. Neue Folge. 72: 177-198.

Svergun, D. I. 1992. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. AppL Crystallogr. 25:495-503.

Svergun, D. I. 1999. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76:2879-2886.

Svergun, D. L, C. Barberato, and M. H. J. Koch. 1995. CRYSOL: a program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 28:768-773.

Svergun, D. L, M. V. Petoukhov, and M. H. Koch. 2001. Determination of domain structure of proteins from x-ray solution scattering. Biophys. J. 80:2946-2953.

Svergun, D. I., S. Richard, M. H. Koch, Z. Sayers, S. Kuprin, and G. Zaccai. 1998. Protein hydration in solution: experimental observation by x-ray and neutron scattering. Proc. Natl. Acad. Sci. U.S.A. 95: 2267-2272.

Tjandra, N., and A. Bax. 1997. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science. 278:1111-1114.

Tolman, J. R., J. M. Flanagan, M. A. Kennedy, and J. H. Prestegard. 1997. NMR evidence for slow collective motions in cyanometmyoglobin. Nat. Struct. Biol. 4:292-297.

Tolman, J. R., H. M. AI-Hashimi, L. E. Kay, and J. H. Prestegard. 2001. Structural and dynamic analysis of residual dipolar coupling data for proteins. J Am. Chem. Soc. 123:1416-1424.

Trewhella, J. 1997. Insights into biomolecular function from small-angle scattering. Curr. Opin. Struct. Biol. 7:702-708.

Vandonselaar, M., R. A. Hickie, J. W. Quail, and L. T. Delbaere. 1994. Trifluoperazine-induced conformational change in CaZ+-calmodulin. Nat. Struct. Biol. 1:795-801.

Wu, Z., N. Tjandra, and A. Bax. 2001. 3'P chemical shift anisotropy as an aid in determining nucleic acid structure in liquid crystals. J. Am. Chem. Soc. 123:3617-3618.

Yamazaki, T., T. Otomo, N. Oda, Y. Kyogoku, K. Uegaki, N. Ito, Y. Ishino, and H. Nakamura. 1998. Segmental isotope labeling for protein NMR using peptide splicing. J. Am. Chem. Soc. 120:5591-5592.

Maija-Liisa Mattinen,* Kimmo Paakkonen,* Teemu Ikonen,^ Jeremy Craven,^^ Torbjorn Drakenberg,* Ritva Serimaa,^ Jonathan Waltho,^^ and Arto Annila^

*VTT Biotechnology, FIN-02044 VTT, Espoo, Finland; ^Department of Physical Sciences, University of Helsinki, FIN-00014 Helsinki, Finland; and ^^Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom

Submitted October 31, 2001, and accepted for publication February 19, 2002.

Address reprint requests to Dr. Arto Annila, Institute of Biotechnology, University of Helsinki, P.O. Box 56, FIN-00014 Helsinki, Finland. Tel.: 358-9-191-50629; Fax: 358-9-191-50639; E-mail: arto.annila@helsinki.fi.

(c) 2002 by the Biophysical Society

Copyright Biophysical Society Aug 2002
Provided by ProQuest Information and Learning Company. All rights Reserved

Return to Trifluoperazine
Home Contact Resources Exchange Links ebay