ABSTRACT A new principle in constructing molecular complexes from the known high-resolution domain structures joining data from NMR and small-angle x-ray scattering (SAXS) measurements is described. Structure of calmodulin in complex with trifluoperazine was built from N- and C-terminal domains oriented based on residual dipolar couplings measured by NMR in a dilute liquid crystal, and the overall shape of the complex was derived from SAXS data. The residual dipolar coupling data serves to reduce angular degrees of freedom, and the small-angle scattering data serves to confine the translational degrees of freedom. The complex built by this method was found to be consistent with the known crystal structure. The study demonstrates how approximate tertiary structures of modular proteins or quaternary structures composed of subunits can be assembled from high-resolution structures of domains or subunits using mutually complementary NMR and SAXS data.
INTRODUCTION
We are indebted to Andrea Hounslow and Clare Treritt for advice and assistance.
This work was supported by the Academy of Finland and Technology Agent of Finland (TEKES).
REFERENCES
Al-Hashimi, H. M., H. Valafar, M. Terrell, E. R. Zartler, M. K. Eidsness, and J. H. Prestegard. 2000. Variation of molecular alignment as a means of resolving orientational ambiguities in protein structures from dipolar couplings. J. Magn. Reson. 143:402-406.
Barbato, G., M. Ikura, L. E. Kay, R. W. Pastor, and A. Bax. 1992. Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry. 31:5269-5278.
Bastiaan, E. W., C. MacLean, P. C. M. van Zijl, and A. A. Bothner-By. 1987. High resolution NMR of liquids and gases: effects of magnetic-- field-induced molecular alignment. Annu. Rep. NMR Spectrosc. 9:35-77.
Bax, A., G. Kontaxis, and N. Tjandra. 2001. bipolar couplings in macromolecular structure determination. Methods Enzymol. 339:127-174.
Biekofsky, R. R., F. W. Muskett, J. M. Schmidt, S. R. Martin, J. P. Browne, P. M. Bayley, and J. Feeney. 1999. NMR approaches for monitoring domain orientations in calcium-binding proteins in solution using partial replacement of Ca^sup 2+^ by Tb^sup 3+^. FEBS Lett. 460:519-526.
Chacon, P., F. Moran, J. F. Diaz, E. Pantos, and J. M. Andreu. 1998. Low-resolution structures of proteins in solution retrieved from x-ray scattering with a genetic algorithm. Biophys. J. 74:2760-2775.
Chattopadhyaya, R., W. E. Meador, A. R. Means, and F. A. Quiocho. 1992. Calmodulin structure refined at 1.7 A resolution. J. MoL Biol. 228: 1177-1192.
Chou, J. J., S. Li, C. B. Klee, and A. Bax. 2001. Solution structure of Ca(2+)-calmodulin reveals flexible hand-like properties of its domains. Nat. Struct. BioL 8:990-997.
Clore, G. M. 2000. Accurate and rapid docking of protein-protein complexes on the basis of intermolecular nuclear Overhauser enhancement data and dipolar couplings by rigid body minimization. Proc. Natl. Acad. Sci. U.S.A. 97:9021-9025.
Clore, G. M., and A. M. Gronenborn. 1998. NMR structure determination of proteins and protein complexes larger than 20 kDa. Curr. Opin. Chem. Biol. 2:564-570.
Clore, G. M., A. M. Gronenborn, and A. Bax. 1998. A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information. J. Magn. Reson. 133:216-221.
Cook, W. J., L. J. Walter, and M. R. Walter. 1994. Drug binding by calmodulin: crystal structure of a calmodulin-trifluoperazine complex. Biochemistry. 33:15259-15265.
Cordier, F., A. J. Dingley, and S. Grzesiek. 1999. A doublet-separated sensitivity-enhanced HSQC for the determination of scalar and dipolar one-bond J-couplings. J. Biomol. NMR. 13:175-180.
Craven, C. J., B. Whitehead, S. K. Jones, E. Thulin, G. M. Blackburn, and J. P. Waltho. 1996. Complexes formed between calmodulin and the antagonists J-8 and TFP in solution. Biochemistry. 35:10287-10299.
Doniach, S. 2001. Changes in biomolecular conformation seen by small angle x-ray scattering. Chem. Rev. 101:1763-1778.
Feigin, L. A., and D. I. Svergun. 1987. Structure Analysis by Small-Angle X-Ray and Neutron Scattering. Plenum Press, New York.
Glatter, O., and 0. Kratky. 1982. Small Angle X-Ray Scattering. Academic Press, New York.
Hansen, M. R., L. Mueller, and A. Pardi. 1998. Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat. Struct. Biol. 5:1065-1074.
Heidorn, D. B., P. A. Seeger, S. E. Rokop, D. K. Blumenthal, A. R. Means, H. Crespi, and J. Trewhella. 1989. Changes in the structure of calmodulin induced by a peptide based on the calmodulin-binding domain of myosin light chain kinase. Biochemistry. 28:6757-6764.
Heidorn, D. B., and J. Trewhella. 1988. Comparison of the crystal and solution structures of calmodulin and troponin C. Biochemistry. 27: 909-915.
Ikura, M., G. Barbato, C. B. Kleem, and A. Bax. 1992b. Solution structure of calmodulin and its complex with a myosin light chain kinase fragment. Cell Calcium. 13:391-400.
Ikura, M., G. M. Clore, A. M. Gronenborn, G. Zhu, C. B. Klee, and A. Bax. 1992a. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science. 256:632-638.
Koch, M. H. J., and H. B. Stuhrmann. 1979. Neutron scattering studies of ribosomes. Methods Enzymol. 59:670-706.
Koradi, R., M. Billeter, and K. Wuthrich. 1996. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14: 51-55.
Losonczi, J. A., M. Andrec, M. W. Fischer, and J. H. Prestegard. 1999. Order matrix analysis of residual dipolar couplings using singular value decomposition. J. Magn. Reson. 138:334-342.
Matsushima, N., N. Hayashi, Y. Jinbo, and Y. Izumi. 2000. Ca 21 -bound calmodulin forms a compact globular structure on binding four trifluoperazine molecules in solution. Biochem. J. 347:211-215.
Meador, W. E., A. R. Means, and F. A. Quiocho. 1992. Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science. 257:1251-1255.
Meiler, J., J. J. Prompers, W. Peti, C. Griesinger, and R. Bruschweiler. 2001. Model-free approach to the dynamic interpretation of residual
dipolar couplings in globular proteins. J. Am. Chem. Soc. 123: 6098-60107.
Miller, J. J., G. Damaschun, and H. Schrauber. 1990. The highly resolved excess electron distance distribution of biopolymers in solution: calculation from intermediate-angle x-ray scattering and interpretation. J. Appl. Crystallogr. 23:26-34.
Osawa, M., M. B. Swindells, J. Tanikawa, T. Tanaka, T. Mase, T. Furuya, and M. Ikura. 1998. Solution structure of calmodulin-W-7 complex: the basis of diversity in molecular recognition. J. Mol. Biol. 276:165-176.
Osawa, M., H. Tokumitsu, M. B. Swindells, H. Kurihara, M. Orita, T. Shibanuma, T. Furuya, and M. Ikura. 1999. A novel target recognition revealed by calmodulin in complex with Caz+-calmodulin-dependent kinase kinase. Nat. Struct. BioL 6:819-824.
Ottiger, M., and A. Bax. 1999. Bicelle-based liquid crystals for NMR-- measurement of dipolar couplings at acidic and basic pH values. J. Biomol. NMR. 13:187-191.
Ottiger, M., F. Delaglio, and A. Bax. 1998. Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J. Magn. Reson. 131:373-378.
Permi, P., and A. Annila. 2000. Transverse relaxation optimised spectroscopy for measurement of residual dipolar couplings from twodimensional ("N,'H] correlation spectra. J. Biomol. NMR. 16:221-227.
Permi, P., P. R. Rosewear, and A. Annila. 2000. A Set of HNCO-TROSY based experiments for measurement of scalar and dipolar couplings. J. Biomol. NMR. 17:43-54.
Pervushin, K., R. Riek, G. Wider, and K. WUthrich. 1997. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. U.S.A. 94:12366-12371.
Salzmann, M., K. Pervushin, G. Wider, H. Senn, and K. Wuthrich. 1998. TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc. NatL Acad. Sci. U.S.A. 95:13585-13590.
Sanders, C. R., B. J. Hare, K. P. Howard, and J. H. Prestegard. 1994. Magnetically-oriented phospholipid micelles as a tool for the study of membrane-associated molecules. Prog. Nuclear Magn. Reson. Spectrosc. 26:421-444.
Shao, I., and D. Tu. 1995. The Jacknife and Bootstrap. Springer-Verlag, New York.
Skrynnikov, N. R., and L. E. Kay. 2000. Assessment of molecular structure using frame-independent orientational restraints derived from residual dipolar couplings. J. Biomol. NMR. 18:239-252.
Stuhrmann, H. B. 1970. Ein neues Verfahren zur Bestimmung der Oberflachenform and der inneren Struktur von gelosten globularen Proteinen aus Rontgenkleinwinkelmessungen. Z Physik. Chem. Neue Folge. 72: 177-198.
Svergun, D. I. 1992. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. AppL Crystallogr. 25:495-503.
Svergun, D. I. 1999. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76:2879-2886.
Svergun, D. L, C. Barberato, and M. H. J. Koch. 1995. CRYSOL: a program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 28:768-773.
Svergun, D. L, M. V. Petoukhov, and M. H. Koch. 2001. Determination of domain structure of proteins from x-ray solution scattering. Biophys. J. 80:2946-2953.
Svergun, D. I., S. Richard, M. H. Koch, Z. Sayers, S. Kuprin, and G. Zaccai. 1998. Protein hydration in solution: experimental observation by x-ray and neutron scattering. Proc. Natl. Acad. Sci. U.S.A. 95: 2267-2272.
Tjandra, N., and A. Bax. 1997. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science. 278:1111-1114.
Tolman, J. R., J. M. Flanagan, M. A. Kennedy, and J. H. Prestegard. 1997. NMR evidence for slow collective motions in cyanometmyoglobin. Nat. Struct. Biol. 4:292-297.
Tolman, J. R., H. M. AI-Hashimi, L. E. Kay, and J. H. Prestegard. 2001. Structural and dynamic analysis of residual dipolar coupling data for proteins. J Am. Chem. Soc. 123:1416-1424.
Trewhella, J. 1997. Insights into biomolecular function from small-angle scattering. Curr. Opin. Struct. Biol. 7:702-708.
Vandonselaar, M., R. A. Hickie, J. W. Quail, and L. T. Delbaere. 1994. Trifluoperazine-induced conformational change in CaZ+-calmodulin. Nat. Struct. Biol. 1:795-801.
Wu, Z., N. Tjandra, and A. Bax. 2001. 3'P chemical shift anisotropy as an aid in determining nucleic acid structure in liquid crystals. J. Am. Chem. Soc. 123:3617-3618.
Yamazaki, T., T. Otomo, N. Oda, Y. Kyogoku, K. Uegaki, N. Ito, Y. Ishino, and H. Nakamura. 1998. Segmental isotope labeling for protein NMR using peptide splicing. J. Am. Chem. Soc. 120:5591-5592.
Maija-Liisa Mattinen,* Kimmo Paakkonen,* Teemu Ikonen,^ Jeremy Craven,^^ Torbjorn Drakenberg,* Ritva Serimaa,^ Jonathan Waltho,^^ and Arto Annila^
*VTT Biotechnology, FIN-02044 VTT, Espoo, Finland; ^Department of Physical Sciences, University of Helsinki, FIN-00014 Helsinki, Finland; and ^^Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
Submitted October 31, 2001, and accepted for publication February 19, 2002.
Address reprint requests to Dr. Arto Annila, Institute of Biotechnology, University of Helsinki, P.O. Box 56, FIN-00014 Helsinki, Finland. Tel.: 358-9-191-50629; Fax: 358-9-191-50639; E-mail: arto.annila@helsinki.fi.
(c) 2002 by the Biophysical Society
Copyright Biophysical Society Aug 2002
Provided by ProQuest Information and Learning Company. All rights Reserved