Structural formula of desflurane
Find information on thousands of medical conditions and prescription drugs.

Desflurane

Desflurane is a highly fluorinated methyl ethyl ether used for maintenance of general anaesthesia. Together with sevoflurane, it is gradually replacing isoflurane for human use, except in the third world where its high cost precludes its use. It has the most rapid onset and offset of the volatile anaesthetic drugs used for general anaesthesia due to its low solubility in blood. more...

Home
Diseases
Medicines
A
B
C
D
Dacarbazine
Dactinomycin
Dalmane
Danazol
Dantrolene
Dapoxetine
Dapsone
Daptomycin
Daraprim
Darvocet
Darvon
Daunorubicin
Daunorubicin
Daypro
DDAVP
Deca-Durabolin
Deferoxamine
Delsym
Demeclocycline
Demeclocycline
Demerol
Demulen
Denatonium
Depakene
Depakote
Depo-Provera
Desferal
Desflurane
Desipramine
Desmopressin
Desogen
Desogestrel
Desonide
Desoxyn
Desyrel
Detrol
Dexacort
Dexamethasone
Dexamfetamine
Dexedrine
Dexpanthenol
Dextran
Dextromethorphan
Dextromoramide
Dextropropoxyphene
Dextrorphan
Diabeta
Diacerein
Diacetolol
Dial
Diamox
Diazepam
Diazoxide
Dibenzepin
Diclofenac
Diclohexal
Didanosine
Dieldrin
Diethylcarbamazine
Diethylstilbestrol
Diethyltoluamide
Differin
Diflucan
Diflunisal
Digitoxin
Digoxin
Dihydrocodeine
Dihydroergotamine
Dihydrotachysterol
Dilantin
Dilaudid
Diltahexal
Diltiazem
Dimenhydrinate
Dimercaprol
Dimetapp
Dimethyl sulfoxide
Dimethyltryptamine
Dimetridazole
Diminazene
Diovan
Dioxybenzone
Diphenhydramine
Diphenoxylate
Dipipanone
Dipivefrine
Diprivan
Diprolene
Diproteverine
Dipyridamole
Disulfiram
Disulfiram
Dizocilpine
Dobutamine
Docetaxel
Docusate sodium
Dofetilide
Dolasetron
Dolobid
Dolophine
Domperidone
Donepezil
Dopamine
Dopram
Doral
Doramectin
Doriden
Dornase alfa
Doryx
Dostinex
Doxapram
Doxazosin
Doxepin
Doxil
Doxil
Doxorubicin
Doxy
Doxycycline
Doxyhexal
Doxylamine
Drisdol
Drixoral
Dronabinol
Droperidol
Drospirenone
Duloxetine
Durabolin
Duragesic
Duraphyl
Duraquin
Dutasteride
Dv
Dyclonine
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

The major drawbacks of desflurane are its low potency and its pungency. It may cause tachycardia when administered at rapidly increased concentrations greater than 1 MAC.

Though it vaporises very readily, it is a liquid at room temperature. Anaesthetic machines use an unusual anaesthetic vaporiser that heats it to generate a gas.

Physical properties

Book Reference

Eger, Eisenkraft, Weiskopf. The Pharmacology of Inhaled Anesthetics. 2003.

Read more at Wikipedia.org


[List your site here Free!]


Membrane structural pertubations caused by anesthetics and nonimmobilizers: A molecular dynamics investigation
From Biophysical Journal, 12/1/01 by Koubi, Laure

ABSTRACT The structural perturbations of the fully hydrated dimyristoyl-phosphatidylcholine bilayer induced by the presence of hexafluoroethane C2F,, a "nonimmobilizer," have been examined by molecular dynamics simulations and compared with the effects produced by halothane CF^sub 3^CHBrCI, an "anesthetic," on a similar bilayer (DPPC) (Koubi et al., Biophys. J. 2000.78:800). We find that the overall structure of the lipid bilayer and the zwitterionic head-group dipole orientation undergo only a slight modification compared with the pure lipid bilayer, with virtually no change in the potential across the interface. This is in contrast to the anesthetic case in which the presence of the molecule led to a large perturbation of the electrostatic potential across to the membrane interface. Similarly, the analysis of the structural and dynamical properties of the lipid core are unchanged in the presence of the nonimmobilizer although there is a substantial increase in the microscopic viscosity for the system containing the anesthetic. These contrasting perturbations of the lipid membrane caused by those quite similarly sized molecules may explain the difference in their physiological effects as anesthetics and nonimmobilizers, respectively.

REFERENCES

Baber, J., J. F. Ellena, and D. S. Cafiso. 1995. Distribution of general anesthetics in phospholipid bilayers determined using ^sup 2^H-NMR and ^sup 1^H-^sup 1^H NOE spectroscopy. Biochemistry. 34:6533-6539.

Buldt, G., H. U. Gaily, J. Seeling, and G. Zaccai. 1979. Neutron diffraction studies on phosphatidylcholine model membranes. I. Head group conformation. J. Mol. Biol. 134:673-691.

Curatola, C., G. Lenaz, and G. Zolese. 1991. Anesthetic membrane interactions: effects on membrane and function. In Drugs and Anesthetic Effects on Membrane Structure and Function. L.C. Abia, Curtain C.C., and Gordon L.M., editors. Wiley-Liss, New York. 35-70.

Eckenhoff, R. G. 1996. An inhalational anesthetic binding domain in the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. U.S.A. 93: 2807-2810.

Fang, Z., M. J. Laster, P. Ionescu, D. D. Koblin, J. Sonner, E. I. Eger Jr, and M. J. Halsey. 1997. Effects of inhaled nonimmobilizer, proconvulsant compounds on desflurane minimum alveolar anesthetic concentration in rats. Anesth. Analg. 85:1149-1153.

Forman, S. A., and D. E. Raines. 1998. Nonanesthetic volatile drugs obey the Meyer-Overton correlation in two molecular protein site models. Anesthesiology. 88:1535-1548.

Franks, N. P., and W. R. Lieb. 1982. Molecular mechanisms of general --th-;a AJt,,- 'AM-AR'7_AQI

Franks, N. P., and W. R. Lieb. 1984. Do general anaesthetics act by competitive binding to specific receptors? Nature. 310:599-601.

Franks, N. P., and W. R. Lieb. 1994. Molecular and cellular mechanisms of general anaesthesia. Nature. 367:607-614.

Jorgensen, W. L., J. Chandrasekhar, J. D. Madura. R. W. Impey, and M. L. Klein. 1983. Comparison of simple potential functions for simulating water J. Chem. Phys. 79:926-935.

Kandel, L., B. S. Chortkoff, J. Sonner, M. J. Laster, and E. Eger. 1996. Nonanesthetic can suppress learning. Anesth. Analg. 82:321-326. Koblin, D., B. Chortkoff, M. Laster, E. Eger, M. Halsey, and P. Ionescu.

1994. Polyhalogenated and perfluorinated compounds that disobey the Meyer-Overton hypothesis. Anesthesiology. 79:1043-1048.

Koehler, L. S., E. T. Fossel, and K. A. Koehler. 1980. A multinuclear magnetics resonance study of the interaction of halothane and chloroform with phosphatidylcholine vesicles. In Molecular Mechanism of Anesthesia. E. Fink, editor. Raven Press, New York. 447-455.

Koubi, L., M. Tarek, M. L. Klein, and D. Scharf. 2000. Distribution of halothane in a dipalmitoylphosphatidylcholine bilaver from molecular

dynamics calculations. Biophys. J. 78:800- 811.

Meyer, H. H. 1899. Theorie der Alkoholnarkose. Arch. Exp. Pathol PharmakoL 42:109-118.

Meyer, H. H. 1901. Zur Theorie der Alkoholnarkose. Ill. Der Einfluss wechselender Temperatur auf Wikungs-starke and Teilungs Koefficient der Nalkolicka. Arch. Exp. Pathol. PharmakoL 154:338-346.

Meyer, K. H. 1937. Contributions to the theory of narcosis. Trans. Faraday. Soc. 33:1062-68.

Miller, K. W., and E. B. Smith. 1973. In A Guide to Molecular Pharmacology-Toxicology, Vol. 1. R.M. Featherstone, editor. Dekker, New York. 427-475.

Minima, K., T. W. Vanderah, M. Minima, and R. A. Harris. 1997. Inhibitory effects of anesthetics and ethanol on muscarinic receptors expressed in Xenopus oocytes. Eur. J. Pharm. 339:237-244.

Miller, K. W. 1985. The nature of the site of general anesthesia. Int. Rev. Neurobiol. 27:1-61.

North, C., and D. S. Cafiso. 1997. Contrasting membrane localization and behavior of halogenated cyclobutanes that follow or violate the Meyer-- Overton hypothesis of general anesthetic potency. Biophys. J. 72: 1754-1761.

Overton, C. E. 1901. Studien uber Narkose, zugleich ein Beitrag zur allgemeinen Pharmakologie. Fisher, Jena.

Pastor, R. W., and S. E. Feller. 1996. Time scale of lipid dynamics and molecular dynamics. In Biological Membranes: A Molecular Perspective from Computation and Experiment. K. M. Merz, Jr., and B. Roux, editors. Birkhouser, Boston. 3-29.

Petrache, H. I., S. Tristram-Nagle, and J. F. Nagle. 1998. Fluid phase structure of EPC and DMPC bilayers. Chem. Phys.Lipids. 95:83-94. Scharf, D., and K. Laasonen. 1996. Structure, effective pair potential and properties of halothane. Chem. Phys. Letters. 258:276-282.

Sclenkrich, M., J. Brickmann, A. D. Mackerell, and M. Karplus. 1996. Empirical potential energy function for phospholipids: criteria for parameter optimization and applications. In Biological Membranes: A Molecular Perspective from Computation and Experiment. Birkhauser, Boston.

Taheri, S., M. J. Laster, J. Liu, E. I. Eger 2nd, M. J. Halsey, and D. D. Koblin. 1993. Anesthesia by n-alkanes not consistent with the Meyer-- Overton hypothesis: determinations of the solubilities of alkanes in saline and various lipids. Anesth. Analg. 77:7-11.

Tang, P., V. Simplaceanu, and Y. Xu. 1999a. Structural consequences of anesthetic and nonimmobilizer interaction with gramicidin A channels. Biophys. J. 76:2346-2350.

Tang, P., J. Hu, S. Liachenko, and Y. Xu. 1999b. Distinctly different interactions of anesthetic and nonimmobilizer with transmembrane channel peptides. Biophys. J. 77:739-746.

Tobias, D. J., K. Tu, and M. L. Klein. 1997. Atomic-scale molecular dynamics simulations of lipid membranes. Curr. Opin. Colloid Interface Sci. 2:15-26.

Trudell, J. R. 1991. Role of membrane fluidity in anesthetic action. In Drugs and Anesthetic Effects on Membrane Structure and Function. L. C. Abia, C. C. Curtain, and L. M. Gordon, editors. Wiley-Liss, New York. 1-14.

Tu, K., M. Tarek, M. L. Klein, and D. Scharf. 1998. Effects of anesthetics on the structure of a phospholipid bilayer: molecular dynamics investigation of halothane in the hydrated liquid crystal phase of dipalmitoylphosphatidylcholine. Biophys. J. 75:2123-2134.

Tuckerman, M. E., D. A. Yarne, S. 0. Samuelson, A. L. Hughes, and G. J. Martyna. 2000. Exploiting multiple levels of parallelism in molecular dynamics based calculations via modern techniques and software paradigms on distributed memory computers. Comp. Phys. Comm. 128: 333-376.

Venable, R. M., Y. Zhang, B. J. Hardy, and R. W. Pastor. 1993. Molecular dynamics simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity. Science. 262:223-226.

Xu, Y., P. Tang, and S. Liachenko. 1998. Unifying characteristics of sites of anesthetic action revealed by combined use of anesthetics and non-- anesthetics. Toxicol. Lett. 101:347-352.

Laure Koubi,* Mounir Tarek,*^ Sanjoy Bandyopadhyay,* Michael L. Klein,* and Daphna Scharf*^^

*Center for Molecular Modeling, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323; ^NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8562; and ^^Department of Anesthesia, Medical Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104-4283 USA

Address reprint requests to: Dr. M. L. Klein, Center for Molecular Modeling, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6232. Tel.: 215-898-8571; Fax: 215-898-8296; E-mail: klein@lrsm.upenn.edu.

Copyright Biophysical Society Dec 2001
Provided by ProQuest Information and Learning Company. All rights Reserved

Return to Desflurane
Home Contact Resources Exchange Links ebay