Dopamine
Find information on thousands of medical conditions and prescription drugs.

Dopamine

Dopamine is a chemical naturally produced in the body. In the brain, dopamine functions as a neurotransmitter, activating dopamine receptors. Dopamine is also a neurohormone released by the hypothalamus. Its main function as a hormone is to inhibit the release of prolactin from the anterior lobe of the pituitary. more...

Home
Diseases
Medicines
A
B
C
D
Dacarbazine
Dactinomycin
Dalmane
Danazol
Dantrolene
Dapoxetine
Dapsone
Daptomycin
Daraprim
Darvocet
Darvon
Daunorubicin
Daunorubicin
Daypro
DDAVP
Deca-Durabolin
Deferoxamine
Delsym
Demeclocycline
Demeclocycline
Demerol
Demulen
Denatonium
Depakene
Depakote
Depo-Provera
Desferal
Desflurane
Desipramine
Desmopressin
Desogen
Desogestrel
Desonide
Desoxyn
Desyrel
Detrol
Dexacort
Dexamethasone
Dexamfetamine
Dexedrine
Dexpanthenol
Dextran
Dextromethorphan
Dextromoramide
Dextropropoxyphene
Dextrorphan
Diabeta
Diacerein
Diacetolol
Dial
Diamox
Diazepam
Diazoxide
Dibenzepin
Diclofenac
Diclohexal
Didanosine
Dieldrin
Diethylcarbamazine
Diethylstilbestrol
Diethyltoluamide
Differin
Diflucan
Diflunisal
Digitoxin
Digoxin
Dihydrocodeine
Dihydroergotamine
Dihydrotachysterol
Dilantin
Dilaudid
Diltahexal
Diltiazem
Dimenhydrinate
Dimercaprol
Dimetapp
Dimethyl sulfoxide
Dimethyltryptamine
Dimetridazole
Diminazene
Diovan
Dioxybenzone
Diphenhydramine
Diphenoxylate
Dipipanone
Dipivefrine
Diprivan
Diprolene
Diproteverine
Dipyridamole
Disulfiram
Disulfiram
Dizocilpine
Dobutamine
Docetaxel
Docusate sodium
Dofetilide
Dolasetron
Dolobid
Dolophine
Domperidone
Donepezil
Dopamine
Dopram
Doral
Doramectin
Doriden
Dornase alfa
Doryx
Dostinex
Doxapram
Doxazosin
Doxepin
Doxil
Doxil
Doxorubicin
Doxy
Doxycycline
Doxyhexal
Doxylamine
Drisdol
Drixoral
Dronabinol
Droperidol
Drospirenone
Duloxetine
Durabolin
Duragesic
Duraphyl
Duraquin
Dutasteride
Dv
Dyclonine
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

Dopamine can be supplied as a medication that acts on the sympathetic nervous system, producing effects such as increased heart rate and blood pressure. However, since dopamine cannot cross the blood-brain barrier, dopamine given as a drug does not directly affect the central nervous system. To increase the amount of dopamine in the brain of patients with diseases such as Parkinson's disease and Dopa-Responsive Dystonia, a synthetic precursor to dopamine such as L-DOPA can be given, since this will cross the blood-brain barrier.

Biochemistry

Dopamine has the chemical formula (C6H3(OH)2-CH2-CH2-NH2). Its chemical name is 4-(2-aminoethyl)benzene-1,2-diol and it is abbreviated "DA."

As a member of the catecholamine family, dopamine is a precursor to epinephrine (adrenaline) and norepinephrine (noradrenaline) in the biosynthetic pathways for these neurotransmitters. Arvid Carlsson won a share of the 2000 Nobel Prize in Physiology or Medicine for showing that dopamine is not just a precursor to these, but a neurotransmitter as well.

Dopamine is synthesized in the body (mainly by nervous tissue and adrenal glands) first by the dehydration of the amino acid tyrosine to DOPA by tyrosine hydroxylase and then by the decarboxylation of DOPA by aromatic-L-amino-acid decarboxylase. In neurons, dopamine is packaged after synthesis into vesicles, which are then released in response to the presynaptic action potential. The inactivation mechanism of neurotransmission are 1) uptake via a specific transporter; 2) enzymatic breakdown; and 3) diffusion. Uptake back to the presynaptic neuron via the dopamine transporter is the major role in the inactivation of dopamine neurotransmission. The recycled dopamine will face either breakdown by an enzyme or be re-packaged into vesicles and reused.

Functions of dopamine in the brain

Role in movement

Dopamine is critical to the way the brain controls our movements and is a crucial part of the basal ganglia motor loop. Shortage of dopamine, particularly the death of dopamine neurons in the nigrostriatal pathway, causes Parkinson's disease, in which a person loses the ability to execute smooth, controlled movements.

Role in cognition and frontal cortex function

In the frontal lobes, dopamine controls the flow of information from other areas of the brain. Dopamine disorders in this region of the brain can cause a decline in neurocognitive functions, especially memory, attention and problem-solving. Reduced dopamine concentrations in the prefrontal cortex are thought to contribute to attention deficit disorder and negative schizophrenia.

Read more at Wikipedia.org


[List your site here Free!]


Dopamine and glutamate in psychiatric disorders
From SciTech Book News, 9/1/05

Dopamine and glutamate in psychiatric disorders.

Ed. by Werner J. Schmidt and Maarten E.A. Reith.

Humana Press Inc.

2005

600 pages

$175.00

Hardcover

RC347

Fostering interactions between psychiatry and neurobiology, researchers in both fields and in pharmacology consider psychiatric diseases primarily as synaptic or extra-synaptic diseases, taking into account changes in dopamine and glutamate neurotransmission that can occur by communications through synaptic connections between neurons, as well as by longer-range actions through the extracellular space. They include both basic and clinical approaches as they discuss dopamine, glutamate, schizophrenia, depression, stress and aggression, anxiety, attention deficit hyperactivity disorder, addiction, neurodegeneration, Parkinson's and Huntington's Diseases, and dementias.

([c] 2005 Book News, Inc., Portland, OR)

COPYRIGHT 2005 Book News, Inc.
COPYRIGHT 2005 Gale Group

Return to Dopamine
Home Contact Resources Exchange Links ebay