Find information on thousands of medical conditions and prescription drugs.

Gonadorelin

Gonadotropin-releasing hormone 1 (GNRH1) is a peptide hormone responsible for the release of FSH and LH from the anterior pituitary. GNRH1 is synthesized and released by the hypothalamus. more...

Home
Diseases
Medicines
A
B
C
D
E
F
G
Gabapentin
Gabitril
Galantamine
Gamma-hydroxybutyrate
Ganciclovir
Garamycin
Gaviscon
Gemcitabine
Gemfibrozil
Gemhexal
Gemzar
Generlac
Gentamicin
Geodon
Gleevec
Gliadel
Gliadel Wafer
Glibenclamide
Glimepiride
Glipizide
Glucagon
Glucobay
Glucohexal
Glucophage
Glucosamine
Glucotrol
Glutethimide
Golytely
Gonadorelin
Goserelin
Gramicidin
Gramicidin S
Granisetron
Grifulvin V
Griseofulvin
Guaifenesin
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

Gene

The gene, GNRH1, for the GNRH1 precursor is located on chromosome 8. This precursor contains 92 amino acids and is processed to GNRH1, a decapeptide (10 amino acids).

Structure

The identity of GNRH1 was clarified by the 1977 Nobel Laureates Roger Guillemin and Andrew V. Schally:

pyroGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly CONH2.

GNRH1 as a neurohormone

GNRH1 is considered a neurohormone, a hormone produced in a specific neural cell and released at its neural terminal. A key area for production of GNRH1 is the preoptic area of the hypothalamus, that contains most of the GNRH1-secreting neurons. GNRH1 is secreted in the portal bloodstream at the median eminence. The portal blood carries the GNRH1 to the pituitary gland, which contains the the gonadotrope cells, where GNRH1 activates its own receptor, gonadotropin-releasing hormone receptor (GNRHR), located in the cell membrane.

GNRH1 is degradated by proteolysis within a few minutes.

Control of FSH and LH

At the pituitary, GNRH1 stimulates the synthesis and secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). These processes are controlled by the size and frequency of GNRH1 pulses, as well as by feedback from androgens and estrogens.

There are differences in GNRH1 secretion between males and females: In males, GNRH1 is secreted in pulses at a constant frequency, but in females the frequency of the pulses varies during the menstrual cycle and there is a large surge of GNRH1 just before ovulation.

GNRH1 secretion is pulsatile in all vertebrates, and is necessary for correct reproductive function. Thus, a single hormone, GNRH1, controls a complex process of follicular growth, ovulation, and corpus luteum maintenance in the female, and spermatogenesis in the male.

Activity

GNRH1 activity is very low during childhood, and is activated at puberty. During the reproductive years, pulse activity is critical for successful reproductive function as controlled by feedback loops. However, once a pregnancy is established, GNRH1 activity is not required. Pulsatile activity can be disrupted by hypothalamic-pituitary disease, either dysfunction (i.e., hypothalamic suppression) or organic lesions (trauma, tumor). Elevated prolactin levels decrease GNRH1 activity. In contrast, hyperinsulinemia increases pulse activity leading to disordery LH and FSH activity, as seen in Polycystic ovary syndrome (PCOS). GNRH1 formation is congenitally absent in Kallmann syndrome.

The GNRH1 neurons are regulated by many different afferent neurons, using several different transmitters (including norepinephrine, GABA, glutamate). For instance, dopamine appears to decrease GNRH1 activity.

Read more at Wikipedia.org


[List your site here Free!]


A possible neuroendocrine method for delaying the adolescent growth spurt and slowing scoliosis curve progression based on the NOTOM hypothesis potential
From Journal of Bone and Joint Surgery, 1/1/03 by Burwell, R G

Nachemson (1996), drawing upon the theses of Sahlstrand (1977) and Lidstrom (1988), articulated the view there are more girls than boys with progressive AIS for the following reason. The maturation of postural mechanisms in the nervous system is complete about the same time in boys and girls. Girls enter their skeletal adolescent growth spurt with immature postural mechanisms - so that if they have a predisposition to develop a scoliosis curve, the spine deforms. In contrast boys enter their adolescent growth spurt with mature postural mechanisms so that they are protected from developing a scoliosis curve. There is evidence that postural sway improves with age in boys and girls until about 10 years of age after which it is similar between the sexes (Hirashawa 1973, Odenrick and Sandstedt 1984) findings which need further evaluation. We term Nachemson's concept the neuro-ossesous timing of maturation (NOTOM) hypothesis. It may have an evolutionary basis through natural selection towards sexual and skeletal development during adolescence being earlier in girls and later in boys.

The NOTOM hypothesis suggests a treatment to prevent progression of late-juvenile idiopathic scoliosis, early-AIS, and some secondary scolioses based on delaying the onset of puberty used therapeutically in girls with idiopathic precocious puberty (IPP, Grumbach and Styne 1998). The proposal is to administer a gonadorelin analogue which in the pituitary down-regulates the receptors to hypothalamic gonadotropin-releasing hormone (GnRH) causing a fall in both luteinizing hormone (LH) and follicle-stimulating hormone (FSH), which in turn causes a fall in oestrogens and androgens, and thereby delays or stops menarche and slows bone growth - as in girls and boys with IPP (Galluzzi et al 1998). Expert scrutiny of this therapeutic proposal is currently in progress.

R. G. Burwell and P. H. Dangerfield

The Centre for Spinal Studies and Surgery, Nottingham, UK

Copyright British Editorial Society of Bone & Joint Surgery 2003
Provided by ProQuest Information and Learning Company. All rights Reserved

Return to Gonadorelin
Home Contact Resources Exchange Links ebay