Doxorubicin chemical structure
Find information on thousands of medical conditions and prescription drugs.

Adriamycin

Doxorubicin or adriamycin is a DNA-interacting drug widely used in chemotherapy. It is an anthracycline and structurely closely related to daunomycin, and also intercalates DNA. It is commonly used in the treatment of uterine cancer and ovarian cancer, as well as some other cancers. more...

Home
Diseases
Medicines
A
8-Hour Bayer
Abacavir
Abamectin
Abarelix
Abciximab
Abelcet
Abilify
Abreva
Acamprosate
Acarbose
Accolate
Accoleit
Accupril
Accurbron
Accure
Accuretic
Accutane
Acebutolol
Aceclidine
Acepromazine
Acesulfame
Acetaminophen
Acetazolamide
Acetohexamide
Acetohexamide
Acetylcholine chloride
Acetylcysteine
Acetyldigitoxin
Aciclovir
Acihexal
Acilac
Aciphex
Acitretin
Actifed
Actigall
Actiq
Actisite
Actonel
Actos
Acular
Acyclovir
Adalat
Adapalene
Adderall
Adefovir
Adrafinil
Adriamycin
Adriamycin
Advicor
Advil
Aerobid
Aerolate
Afrinol
Aggrenox
Agomelatine
Agrylin
Airomir
Alanine
Alavert
Albendazole
Alcaine
Alclometasone
Aldomet
Aldosterone
Alesse
Aleve
Alfenta
Alfentanil
Alfuzosin
Alimta
Alkeran
Alkeran
Allegra
Allopurinol
Alora
Alosetron
Alpidem
Alprazolam
Altace
Alteplase
Alvircept sudotox
Amantadine
Amaryl
Ambien
Ambisome
Amfetamine
Amicar
Amifostine
Amikacin
Amiloride
Amineptine
Aminocaproic acid
Aminoglutethimide
Aminophenazone
Aminophylline
Amiodarone
Amisulpride
Amitraz
Amitriptyline
Amlodipine
Amobarbital
Amohexal
Amoxapine
Amoxicillin
Amoxil
Amphetamine
Amphotec
Amphotericin B
Ampicillin
Anafranil
Anagrelide
Anakinra
Anaprox
Anastrozole
Ancef
Android
Anexsia
Aniracetam
Antabuse
Antitussive
Antivert
Apidra
Apresoline
Aquaphyllin
Aquaphyllin
Aranesp
Aranesp
Arava
Arestin
Arestin
Argatroban
Argatroban
Argatroban
Argatroban
Arginine
Arginine
Aricept
Aricept
Arimidex
Arimidex
Aripiprazole
Aripiprazole
Arixtra
Arixtra
Artane
Artane
Artemether
Artemether
Artemisinin
Artemisinin
Artesunate
Artesunate
Arthrotec
Arthrotec
Asacol
Ascorbic acid
Asmalix
Aspartame
Aspartic acid
Aspirin
Astemizole
Atacand
Atarax
Atehexal
Atenolol
Ativan
Atorvastatin
Atosiban
Atovaquone
Atridox
Atropine
Atrovent
Augmentin
Aureomycin
Avandia
Avapro
Avinza
Avizafone
Avobenzone
Avodart
Axid
Axotal
Azacitidine
Azahexal
Azathioprine
Azelaic acid
Azimilide
Azithromycin
Azlocillin
Azmacort
Aztreonam
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

Doxil® is a liposome-encapsulated dosage form of doxorubicin made by Johnson & Johnson. Its main benefits are a reduction in cardiotoxicity. It follows the similar preparation of daunorubicin in a liposomal carrier.

Mechanism of Action

Doxorubicin acts by binding to DNA where it can inhibit the progression of the enzyme topoisomerase II, which unwinds DNA for transcription. Doxorubicin stabilises the topoisomerase II complex after it has broken the DNA chain for replication, preventing the DNA double helix from being resealed and thereby stopping the process of replication.

Side Effects

Acute side-effects of doxorubicin are nausea, vomiting, decrease in white blood cells and hair loss. When the cumulative dose of doxorubicin reaches 450mg/m2, the risk of congestive heart failure dramatically increases.

Clinical Use

Doxorubicin is a commonly used to treat Hodgkins disease, breast cancer, lung cancer, soft tissue sarcoma, Kahlers disease.

Read more at Wikipedia.org


[List your site here Free!]


Inositol hexaphosphate enhances the anti-proliferative effects of adriamycin and tamoxifen in breast cancer - IP6 - Brief Article
From Alternative Medicine Review, 11/1/03 by K Tantivejkul

The current treatment of breast carcinomas recognizes the importance of combination therapy in order to increase efficacy and decrease side effects of conventional chemotherapy. Inositol hexaphosphate (IP6), a naturally occurring polyphosphorylated carbohydrate, has shown a significant anti-cancer effect in various in vivo and in vitro models, including breast cancer. In this study, we investigated the in vitro growth inhibitory activity of IP6 in combination with adriamycin or tamoxifen, against three human breast cancer cell lines: estrogen receptor (ER) alpha-positive MCF-7, ER alpha-negative MDA-MB 231 and adriamycin-resistant MCF-7 (MCF-7/Adr) using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Much lower concentrations of IP6 were required after 96 h of treatment to inhibit the growth of MCF-7/Adr cells than MCF-7 cells; the IC50 for MCF-7/ Adr cells was 1.26 mM compared to 4.18 mM for MCF-7 cells. The ER-negative MDA-MB 231 cells were also highly sensitive to IP6 with IC50 being 1.32 mM. To determine the effects of IP6 in combination with either adriamycin or tamoxifen, the median effect principle and Webb's fraction method were used to determine the combination index (CI) and the statistical differences. Growth suppression was markedly increased when IP6 was administered prior to the addition of adriamycin, especially against MCF-7 cells (CI = 0.175 and p < 0.0001). Synergism was also observed when TP6 was administered after tamoxifen in all three cell lines studied (CI = 0.343, 0.701 and 0.819; p < 0.0001, p = 0.0003 and 0.0241 for MCF-7/Adr, MCF-7 and MDA-MB 231, respectively). The growth of primary culture of breast cancer cells from patients was inhibited by IP6 with LC50 values ranging from 0.91 to 5.75 mM (n = 10). Our data not only confirm that IP6 alone inhibits the growth of breast cancer cells; but it also acts synergistically with adriamycin or tamoxifen, being particularly effective against ER alpha-negative cells and adriamycin-resistant cell lines.

COPYRIGHT 2003 Thorne Research Inc.
COPYRIGHT 2003 Gale Group

Return to Adriamycin
Home Contact Resources Exchange Links ebay