Find information on thousands of medical conditions and prescription drugs.

Chlortetracycline

Chlortetracycline (Aureomycin®, Lederle) is the first tetracycline antibiotic to be discovered. It was discovered in 1945 by Dr Benjamin Duggar in a soil sample from Sanborn fields, yielding an actinomycete, Streptomyces aureofaciens (hence the name Aureomycin).

Home
Diseases
Medicines
A
B
C
Cabergoline
Caduet
Cafergot
Caffeine
Calan
Calciparine
Calcitonin
Calcitriol
Calcium folinate
Campath
Camptosar
Camptosar
Cancidas
Candesartan
Cannabinol
Capecitabine
Capoten
Captohexal
Captopril
Carbachol
Carbadox
Carbamazepine
Carbatrol
Carbenicillin
Carbidopa
Carbimazole
Carboplatin
Cardinorm
Cardiolite
Cardizem
Cardura
Carfentanil
Carisoprodol
Carnitine
Carvedilol
Casodex
Cataflam
Catapres
Cathine
Cathinone
Caverject
Ceclor
Cefacetrile
Cefaclor
Cefaclor
Cefadroxil
Cefazolin
Cefepime
Cefixime
Cefotan
Cefotaxime
Cefotetan
Cefpodoxime
Cefprozil
Ceftazidime
Ceftriaxone
Ceftriaxone
Cefuroxime
Cefuroxime
Cefzil
Celebrex
Celexa
Cellcept
Cephalexin
Cerebyx
Cerivastatin
Cerumenex
Cetirizine
Cetrimide
Chenodeoxycholic acid
Chloralose
Chlorambucil
Chloramphenicol
Chlordiazepoxide
Chlorhexidine
Chloropyramine
Chloroquine
Chloroxylenol
Chlorphenamine
Chlorpromazine
Chlorpropamide
Chlorprothixene
Chlortalidone
Chlortetracycline
Cholac
Cholybar
Choriogonadotropin alfa
Chorionic gonadotropin
Chymotrypsin
Cialis
Ciclopirox
Cicloral
Ciclosporin
Cidofovir
Ciglitazone
Cilastatin
Cilostazol
Cimehexal
Cimetidine
Cinchophen
Cinnarizine
Cipro
Ciprofloxacin
Cisapride
Cisplatin
Citalopram
Citicoline
Cladribine
Clamoxyquine
Clarinex
Clarithromycin
Claritin
Clavulanic acid
Clemastine
Clenbuterol
Climara
Clindamycin
Clioquinol
Clobazam
Clobetasol
Clofazimine
Clomhexal
Clomid
Clomifene
Clomipramine
Clonazepam
Clonidine
Clopidogrel
Clotrimazole
Cloxacillin
Clozapine
Clozaril
Cocarboxylase
Cogentin
Colistin
Colyte
Combivent
Commit
Compazine
Concerta
Copaxone
Cordarone
Coreg
Corgard
Corticotropin
Cortisone
Cotinine
Cotrim
Coumadin
Cozaar
Crestor
Crospovidone
Cuprimine
Cyanocobalamin
Cyclessa
Cyclizine
Cyclobenzaprine
Cyclopentolate
Cyclophosphamide
Cyclopropane
Cylert
Cyproterone
Cystagon
Cysteine
Cytarabine
Cytotec
Cytovene
Isotretinoin
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

Read more at Wikipedia.org


[List your site here Free!]


Evaluationof a forage-fat blend as an isocaloric substitute for steam-flaked wheat in finishing diets for feedlot cattle: Growth performance and digestive
From Professional Animal Scientist, 9/1/02 by Plascencia, A

Abstract

Two trials were conducted to evaluate the addition of a forage-fat blend (FFB) as a substitute for grain in finishing diets for feedlot cattle. Treatments consisted of a steam-flaked wheat-based finishing dies containing 15, 29, or 45% FFB. The FFB contained 80% chopped alfalfa hay and 20% yellow grease and was formulated to have NE^sub m^ and NE^sub g^ values similar to that of wheat. In Trial 1, 126 crossbred steers (225 +/- 5.4 kg) were used to

evaluate treatment effects on growth performance and dietary NE. In Trial 2, three Holstein steers (448 +/- 21 kg) with cannulas in the rumen and proximal duodenum were used to evaluate treatment effects on characteristics of digestion. Increasing the FFB did not affect (P>0. 10) ADG, but decreased gain efficiency (linear effect, NO. 05) and dietary NE concentration (linear effect, NO. 01). Increasing the FFB did not affect

(P>0. 10) ruminal digestion of starch, N, or microbial N (MN) efficiency, but decreased (linear effect, P0.10) postruminal digestion of OM, starch, and N, but decreased postruminal digestion of fatty acids (linear effect, NO. 05). Increasing the FFB did not affect (P>0. 10) percentage of total tract starch, N, and ADF digestion, but decreased the percentage of total tract digestion of OM (linear effect, P15%, dietary NE and, hence, BW gain efficiency may decrease. The magnitude of the effect of FFB inclusion rate on energy recovery is a predictable function of the relationship between fatty acid intake and intestinal fatty acid digestion.

(Key Words: Feedlot Diets, Fat, Forage, Performance, Digestion.)

Introduction

The tabular NE^sub m^ and NE^sub g^ values of fat are 6.00 and 4.50 Mcal/kg, respectively (21). However, these values are considered valid only when the level of fat intake is low [

Results and Discussion

Implications

A FFB comprised of 80% alfalfa hay and 20% yellow grease can replace steam-flaked wheat at up to 45% of the DM in growing-finishing diets for feedlot cattle without affecting daily BW gain. However, at dietary inclusion rates >15%, dietary NE and, hence, feed efficiencies are decreased. The magnitude of the decrease in energy recovery is a predictable function of the relationship between fatty acid intake and intestinal fatty acid digestion. More work is needed to evaluate treatment effects on digestive function and growth performance when using a grass hay as the forage source in the FFB.

Literature Cited

1. AOAC. 1984. Official Methods of Analysis. (12th Ed.). Association of Official Analytical Chemists, Washington, DC.

2. Bartle, S. J., R. L. Preston, and M. R Miller. 1994. Dietary energy source and density: Effect of roughage source, roughage equivalent, tallow level , and steer type on feedlot performance and carcass characteristics. J. Anim. Sci.72:1943.

3. Bergen, W. G., D. B. Purcer, and J. H. Cline. 1969. Effect of ration on the nutritive quality of rumen microbial protein. J. Anim. Sci. 27:1497.

4. Brandt, R. T. 1992. Fat in diets for feedlot cattle. In Proc. Southwest Nutr. Manage.

Conf., Scottsdale, AZ. p 27. Dep. Anim. Sci., Univ. Arizona, Scottsdale, AZ.

5. Calderon-Cortes, J. F., and R. A. Zinn. 1996. Influence of dietary forage level and forage coarseness of grind on growth performance and digestive function in feedlot steers. J. Anim. Sci. 74:2310.

6. Colin, J., H. E. Kiesling, T. T. Ross, G. M. Southward, and J. F. Smith. 1993. Effect of gosypol on growing Holstein heifers. Proc. West. Sect. Am. Soc. Anim. Sci. 44:398.

7. Devendra, C. A., and D. Lewis. 1974. Interaction between dietary lipids and fiber in the sheep. Anim. Prod. 19:67.

8. Erwin, E. S., J. A. Dyer, and M. E. Sminger.1956. Effect of chlortetracycline, inedible fat, stilbestrol and high and low quality roughage on performance of yearling steers. J. Anim. Sci. 15:710.

9. Ferlay, A., J. Chabrot, Y. Elmeddah, and M. Doreau. 1993. Ruminal lipid balance and intestinal digestion by dairy cows fed calcium salts of rapeseed oil fatty acids or rapeseed oil. J. Anim. Sci. 71:2237.

10. Garton, G. A. 1967. The digestion and absorption of lipids in ruminant animals. World Rev. Nutr. Diet. 7:225.

11. Goering, H. K., and P. J. VanSoest. 19 70. Forage fiber analysis (apparatus, reagents, procedures, and some applications). Agric. Handbook No 379. ARS, USDA, Washington, DC.

12. Hale, W. H., and R. S. Swingle. 1984. Summary of whole cottonseed experiments with beef cattle at the University of Arizona. In Proc. 25th Annu. Arizona Cattle Feeders Day, Casa Grande, AZ. p 4. Dep. Anim. Sci., Univ. Arizona, Tucson, AZ.

13. Hicks, C. R. 1973. Fundamental Concepts in the Design of Experiments. Holt, Rinehart, and Winston, Inc.

14. Hill, F. N., and D. L. Anderson. 1958. Comparison of metabolizable energy and productive energy determinations with growing chicks. J. Nutr. 64:587.

15. Huerta-Leidenz, N. D., H. R. Cross, D. K. Lunt, L. S. Pelton, J. W. Savell, and S. B. Smith. 1991. Growth, carcass traits, and fatty acid profiles of adipose tissues from steers fed whole cottonseed. J. Anim. Sci. 69:3665.

16. Hussein, H. S., hI. R. Merchen, and G. C. Fahey, Jr. 1995. Effects of forage level and canola seed supplementation on site and extent of digestion of organic matter, carbohydrates, and energy by steers. J. Anim. Sci. 73:2458.

17. Johnson, R. R., and K. E. McClure. 1972. High fat rations for ruminants. 1. The addition of saturated and unsaturated fats to high roughage and concentrate rations. J. Anim. Sci. 34:501.

18. Krehbiel, C. R., R. A. Stock, D. H. Shain, C. J. Richards, G. A. Ham, R. A. McCoy, T. J. Klopfenstein, R. A. Britton, and R. P. Huffman. 1995. Effect of level and type of fat on subacute acidosis in cattle fed dry-rolled corn finishing diets. J. Anim. Sci. 73:2438.

19. Murillo, M., E. G. Alvarez, J. Cruz, H. Castro, J. F. Sanchez, M. S. Vazquez, and R. A. Zinn. 2000. Interaction of forage level and fibrolytic enzymes on digestive function in cattle. Proc. West Sect. Am. Soc. Anim. Sci. 51:324.

20. NRC. 1984. Nutrient Requirement of Beef Cattle. (6th Rev. Ed.). National Academy Press, Washington, DC.

21. NRC. 1996. Nutrient Requirement of Beef Cattle. (7th Rev. Ed.). National Academy Press, Washington, DC.

22. Plascencia, A., G. E. Arellano, M. A. LopezSoto, and R. A. Zinn. 1994. Influence of method of substitution of supplemental fat on characteristics of ruminal and total tract digestion in lactating Holstein cows. J. Anim. Sci. 72(Suppl 1):302 (Abs.).

22. Plascencia, A., M. Cervantes, and R. A. Zinn. 2001. Influence of fat titer and method of addition on characteristics of ruminal and total tract digestion. Proc. West Sect. Amer. Soc. Anim. Sci. 52:548.

23. Plascencia, A., M. Estrada, and R. A. Zinn. 1999. Influence of free fatty acid content on the feeding value of yellow grease in finishing diets for feedlot cattle. J. Anim. Sci. 77:2603.

24. Poore, M. H., J. A. Moore, and R. S. Swingle. 1990. Differential passage rates and digestion of neutral detergent fiber from grain and forages in 30, 60 and 90% concentrate diets fed to steers. J. Anim. Sci. 68:2965.

25. Pylot, S. J., J. J. McKinnon, A. F. Mustafa, V. J. Racz, and D. A. Christensen. 2000. Effects of processing and fat content of coarse canola screenings on voluntary intake and total tract nutrient digestibility of beef steers. Can. J. Anim. Sci. 80:153.

26. Pylot, S. J., J. J. McKinnon, I A. McAllister, A. F. Mustafa, J. Popp, and D. A. Christensen. 2000. Canola screenings as a fiber source in barley-based feedlot diets: Effects on rumen fermentation and performance of steers. Can. J. Anim. Sci. 80:161.

27. Russell, J. B., and D. B. Wilson. 1996. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J. Dairy Sci. 79:1503.

28. Shriver, B. J., W. H. Hoover, J. P. Sargent, R. J. Crawford, Jr., and W. V. Thayne. 1986. Fermentation of a high concentrate diet as affected by ruminal pH and digesta flow. J. Dairy Sci. 69:413.

29. Sukhija, P., and D. L. Palmquist. 1988. Rapid method for determination of total fatty acid content and composition of feedstuff and feces. J. Agric. Food Chem. 36:1202.

30. Wolin, M. J. 1960. A theoretical rumen fermentation balance. J. Dairy Sci. 43:1452.

31. Zinn, R. A. 1988. Comparative feeding value of supplemental fat in finishing diets for feedlot steers supplemented with and without monensin. J. Anim. Sci. 66:213.

32. Zinn, R. A. 1989. Influence of level and source of dietary fat on its comparative

feeding value in finishing diets for feedlot steers: Metabolism. J. Anim. Sci. 67:1038.

33. Zinn, R. A. 1990. Influence of steaming time on site of digestion of flaked corn in steers. J. Anim. Sci. 68:776.

34. Zinn, R. A. 1992. Comparative feeding value of supplemental fat in steam-flaked corn and steam-flaked wheat-based finishing diets for feedlot steers. J. Anim. Sci. 70:2959.

35. Zinn, R. A. 1994. Detrimental effects of excessive dietary fat on feedlot cattle growth performance and digestive function. Prof. Anim. Sci. 10:66.

36. Zinn, R. A., E. G. Alvarez, A. Plascencia, and Y. Shen. 1998. Influence of method of supplementation on the utilization of

supplemental fat by feedlot steers. Proc. West. Sect. Am. Soc. Anim. Sci. 49:291.

37. Zinn, R. A., and F. N. Owens. 1986. A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Can. J. Anim. Sci. 66:157.

38. Zinn, R. A., S. K. Gulati, A. Plascencia, and J. Salinas. 2000. Influence of ruminal biohydrogenation on the feeding value of fat in finishing diets for feedlot cattle. J. Anim. Sci. 78:1738.

39. Zinn, R. A., and A. Plascencia. 1992. Comparative digestion of yellow grease and calcium soaps of long chain fatty acids in cattle. Proc. West. Sect. Am. Soc. Anim. Sci. 43:454.

40. Zinn, R. A., and A. Plascencia. 1993. Interaction of whole cottonseed and supplemental fat on digestive function in cattle. J. Anim. Sci. 71:11.

41. Zinn R. A., and A. Plascencia. 1996. Effect of forage level on the comparative feeding value of supplemental fat on growingfinishing diets for feedlot cattle.]. Anim. Sci. 74:1194.

42. Zinn, R. A., A. Plascencia, and R. Barajas. 1994. Interaction of forage level and monensin in diets for feedlot cattle on growth performance and digestive function. J. Anim. Sci. 72:2209.

A. PLASCENCIA* and R. A. ZINN^,1, PAS

Instituto de Investigaciones en Ciencias Veterinarias, Universidad Aut6noma cle Baja California, Mexicala, Mexico; ^Desert Research and Extension Center, University of California, El Centro, CA 92243

1To whom correspondence should be addressed: razinn@ucdavis.edu

Copyright American Registry of Professional Animal Scientists Sep 2002
Provided by ProQuest Information and Learning Company. All rights Reserved

Return to Chlortetracycline
Home Contact Resources Exchange Links ebay